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ABSTRACT
Drift and migration disequilibrium are very common in animal and plant populations. Yet their impact

on methods of estimation of demographic parameters was rarely evaluated especially in complex realistic
population models. The effect of such disequilibria on the estimation of demographic parameters depends
on the population model, the statistics, and the genetic markers used. Here we considered the estimation
of the product D�2 from individual microsatellite data, where D is the density of adults and �2 the average
squared axial parent-offspring distance in a continuous population evolving under isolation by distance.
A coalescence-based simulation algorithm was used to study the effect on D�2 estimation of temporal and
spatial fluctuations of demographic parameters. Estimation of present-time D�2 values was found to be
robust to temporal changes in dispersal, to density reduction, and to spatial expansions with constant
density, even for relatively recent changes (i.e., a few tens of generations ago). By contrast, density increase
in the recent past gave D�2 estimations biased largely toward past demographic parameters values. The
method was also robust to spatial heterogeneity in density and estimated local demographic parameters
when the density is homogenous around the sampling area (e.g., on a surface that equals four times the
sampling area). Hence, in the limit of the situations studied in this article, and with the exception of the
case of density increase, temporal and spatial fluctuations of demographic parameters appear to have a limited
influence on the estimation of local and present-time demographic parameters with the method studied.

DISPERSAL rates and population sizes or densities Rowe 2001; Spong and Hellborg 2002), population
geneticists usually consider that contemporary spatialare important demographic parameters in evolu-
patterns of diversity reflect the past more than the pres-tionary processes. Many studies have attempted to estimate
ent-time population dynamics of a species. Whitlockthose parameters, using direct methods (e.g., mark-recap-
and McCauley (1999) recently concluded that esti-ture methods) or indirect methods (genetic markers).
mates of the number of migrants between subpopula-Discrepancies between estimations based on direct and
tions from F-statistics under the assumption of an islandindirect methods have often been attributed to inade-
model at equilibrium were “likely to be correct withinquacies of the assumptions of the genetic models in
a few orders of magnitude” only because assumptionsindirect methods (Hastings and Harrison 1994; Slat-
of the genetic model (i.e., equal migration, no selection,kin 1994; Koenig et al. 1996). The assumptions that have
and demographic stability) are often violated in biologi-usually been considered inadequate are those related to
cal systems. This degree of precision is of little value forthe modalities of dispersal (e.g., the island model), the
understanding the present-time demographic processesmutation rates and processes of genetic markers, the
of populations. This is particularly worrying in a practi-selective neutrality of genetic markers, and the demo-
cal context since reliable estimates of present or at leastgraphic stability in time and space. The latter assump-
recent migration rates, dispersal distances, or densitiestion raises the question of the exact meaning of demo-
are increasingly demanded as integral elements of ap-graphic parameter estimations in biological systems for
plied management and conservation decisions.which temporal and/or spatial fluctuations of demo-

The effect of temporal and spatial fluctuations on thegraphic parameters have occurred. With a few excep-
estimation of demographic parameters strongly de-tions (e.g., Stone and Sunnucks 1993; Beebee and
pends on the type and intensity of the fluctuation en-
countered. However, it also strongly depends on the
population models assumed, the statistics computed,
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only a few of them have considered more sophisticated (Malécot 1975; Rousset 2000). More realistic continu-
ous models would incorporate the feature that individu-and realistic models (but see Slatkin 1993). In numer-

ous species, individual dispersal is restricted in space als could settle in any position in a continuous space.
Although such models have been formulated (e.g.,(see references in Leblois et al. 2003). A method of

analysis adapted to a “continuous” population evolving Malécot 1967; Sawyer 1977), it is known that they do
not follow a well-defined set of biological assumptionsunder isolation by distance was developed to estimate

the product D�2, where D is the density of adults and (Maruyama 1972; Felsenstein 1975; see Barton et al.
2002 for an alternative approach for continuous popula-�2 the average squared axial parent-offspring distance

(Rousset 2000). This method uses a regression of esti- tions). To avoid edge effects, a two-dimensional lattice
is represented on a torus. Edges and lattice size havemators of a parameter ar to the geographical distances

or the logarithm of the geographical distances in one little effect on local differentiation when the habitat
area (i.e., the lattice size) is large compared to the meanor two dimensions, respectively. The parameter ar, de-

fined in Rousset (2000), is analogous to the parameter dispersal (Leblois et al. 2003). Finally, we considered
diploid individuals with dispersal through gametes only.FST/(1 � FST) but is calculated between individuals (see

Method of analysis for details about this parameter and The life cycle is divided into five steps: (i) at each repro-
ductive event, each individual gives birth to a great num-its estimator). The inverse of the slope of the regression

line gives an estimate of 4�D�2 (Rousset 1997). The ber of gametes and dies; (ii) gametes undergo the effect
of mutations; (iii) gametes disperse; (iv) diploid individ-method is valid for leptokurtic distributions of dispersal

distance (Rousset 2000; Leblois et al. 2003), a feature uals are formed; and (v) competition brings back the
number of adults in each deme to N (usually N � 1 butcommonly observed in natural populations (review and

data in Endler 1977; Portnoy and Willson 1993). see Spatial and temporal heterogeneities). We assume here
random assortment of gametes present after dispersalBecause analysis of genetic differentiation is made at a

small (local) geographical scale, heterogeneity of demo- at a given node. This is akin to random selfing in a
population of N diploids without spatial structure, bygraphic parameters such as dispersal or density is re-

duced and hence its influence on genetic differentiation which selfing occurs with frequency 1/N. How alterna-
tive assumptions would affect the analysis is discussedis also reduced (Slatkin 1993; Rousset 2001). The

good properties of this method have been confirmed below.
Coalescent algorithm: In this work, we focused onby comparisons of direct and indirect estimates of D�2

(Rousset 2000; Sumner et al. 2001). isolation by distance. For this category of models, no
analytical treatment of coalescence time or coalescenceAs for any population genetics method of demo-

graphic parameter estimation, the quality of the estima- probabilities has been done for more than two genes.
The coalescent algorithm used in this study is thus nottion of D�2 using this method may be affected by local

and temporal spatial heterogeneities in demographic based on the large-N approximation of the n-coalescent
theory; rather it is an exact algorithm for which coales-parameters. In this study, we adapted the coalescence-

based simulation algorithm of Leblois et al. (2003) to cence and migration events are considered generation by
generation until the common ancestor of the sample hasstudy the effect of temporal and spatial fluctuations of

demographic parameters on the estimation of present- been found. The idea of tracing lineages back in time
generation by generation is fundamental in the coales-time D�2. Although one can imagine many scenarios

dealing with demographic heterogeneities in space and cence theory, and is well described in Nordborg (2001).
Such a generation-by-generation algorithm leads to less ef-time, we have chosen to focus our study on demographic

scenarios often met in empirical surveys in conservation ficient simulations in terms of computation time than
do those based on the n-coalescent theory (Kingmanbiology and in the study of introduced invading species.

In this context, we assessed the effect on the estimation 1982a,b; Nordborg 2001). However, this algorithm is
much more flexible when complex demographic andof the present-time D�2 of (i) a temporal change of the

dispersal feature, (ii) a density reduction (bottleneck) dispersal features are considered. Note that, since multi-
ple coalescent events are taken into account by consider-or increase (flush) in time, (iii) a spatial expansion with

constant density, and (iv) a sample of individuals taken ing the probability of a coalescence event of k genes in
a given parental node (� 1/2k�1 under the model withfrom a high-density zone within a lower-density area.
one individual per lattice node), it allows us to build
an exact coalescent tree under very small population

MODELS AND METHODS
size. The entire generation-by-generation algorithm that
gives the coalescent tree for a sample of n genes evolvingSpatial model and population cycle: The model that

we considered for “continuous” populations is the lat- under isolation by distance, with density and dispersal
homogenous in space and time, is detailed in Lebloistice model with each lattice node corresponding to one

diploid individual. This model without demic structure et al. (2003). The algorithm and the program used in
this study were checked at every step during its elabora-is viewed as an approximation for truly continuous

populations with infinitely strong density regulation tion by comparing simulated values of probabilities of
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identity of two genes under models of isolation by dis- study of Leblois et al. (2003) stressed the interest in
tance on finite lattices with their exact analytically com- using loci with high levels of polymorphism for D�2

puted values (e.g., Malécot 1975 for the lattice model) estimation. Therefore, microsatellite markers were sim-
with adaptation to different mutation models following ulated in the present study. On the basis of direct obser-
general methods valid for any assumption about dis- vations of mutations at human microsatellite loci (Dib
persal and density (Rousset 1996). These comparisons et al. 1996; Ellegren 2000), the generalized stepwise
show that estimates of identity probabilities from our model (GSM) in which the change in the number of
program and analytical expectations differ by less than repeat units forms a geometric random variable was
one per thousand for sufficiently long runs. adopted (Pritchard et al. 1999; Estoup et al. 2001).

Dispersal functions: Let (dx, dy) be the parent-off- The variance of the geometric distribution was fixed at
spring axial distance, backward in time, expressed in 0.36 (Estoup et al. 2001), a value computed from the
number of steps on the lattice. Under a two-dimensional mutation data in Dib et al. (1996). The mutation rate
model, the probability distribution of the random vari- was equal to 5 � 10�4, a value considered as the average
able (dx, dy) is given by bdx,dy, the “backward” dispersal mutation rate in many species (reviewed in Estoup and
function. The term backward is used because the posi- Angers 1998). The GSM does not capture all the com-
tion of the parental gene is determined knowing the plexity of the mutation process at microsatellite loci
position of its descendant gene. This function is calcu- (reviewed in Ellegren 2000; Schlötterer 2000).
lated using fdx,dy, the forward dispersal density function However, Leblois et al. (2003) have shown that exact
describing where descendants go. Biologically realistic mutation processes, and in particular the occurrence
dispersal functions often have a high kurtosis (Endler of constraints on allele size and increase of mutation
1977; Kot et al. 1996). As previously explained (Rousset rate with allele length, have little influence on D�2 esti-
2000), the commonly used discrete probability distribu- mations.
tions for dispersal are not appropriate here because Method of analysis: Each simulation iteration gives
high kurtosis can be achieved only by assuming a low the genotypes at 10 polymorphic loci of 100 (i.e., 10 �
dispersal probability, i.e., that most offspring reproduce 10) individuals characterized by their coordinates on
exactly where their parents reproduced. Thus we used the lattice. Ten loci and 100 individuals were considered
forward dispersal distributions for which the probability as representative of the number of loci and individuals
of moving k steps (for 0 � k � Kmax) in one direction commonly analyzed in empirical studies based on micro-
is of the form satellites. Independent coalescent trees were used to

simulate multilocus genotypes at independent loci. Infk � f�k � M/kn, (1)
practice it is difficult to sample all individuals in a small

with parameters M and n controlling the total dispersal area. Simulations were run for a sample of (10 � 10)
rate and the kurtosis, respectively. This distribution cor- individuals taken every two nodes from an area of (20 �
responds to a truncated variant of the discrete Pareto, 20) nodes in the lattice. In this we aimed to roughly
or �, distribution (see, e.g., Patil and Joshi 1968). By mimic a sampling scheme commonly achieved in empir-
suitable choice of the two parameter values, large kurto- ical studies. This process was repeated 1000 times giving
sis can be obtained with high migration rates (Rousset 1000 multilocus samples of 100 individuals sharing the
2000). For some distributions, the first p terms were same demographic history.
arbitrarily fixed: For each simulated multilocus sample, estimates of

the parameter ar � (Qw � Qr)/(1 � Qw) were computed
f1 � f�1 � M1, f2 � f�2 � M2, . . , fp � f�p � Mp , for each pair of individuals, with Qw the probability of

identity in state for two genes taken from the sameand for p � k � Kmax, fk � f�k � M/kn. (2)
individual and Qr the probability of identity in state for

Dispersal was assumed to be independent in each direc- two genes at geographical distance r (Rousset 2000).
tion, so that fdx,dy � fdx � fdy. When density is homogenous The parameter ar is a parameter analogous to FST/(1 �
in space, backward dispersal functions are equal to forward FST) calculated between individuals (not between popu-
dispersal functions, so that bdx,dy � fdx,dy � fdx � fdy. lations as in Rousset 1997). An estimator of ar for a

Mutation processes: The number of mutations on pair 	 of individuals taken from the P different possible
each branch of the coalescent tree follows a binomial pairs is
distribution with parameter (
, L), where 
 is the muta-
tion rate and L the length of the branch. The allelic

â � SSb(	)P

�P
k�1SSw(k)

�
1
2

, (3)states of each gene of the sample were obtained starting
from the common ancestor of the sample (root of the

where SSb[etween](	) � �i,j(Xi.:u � Xi.:u)2 measures divergencegenealogical tree) from an allelic state determined ac-
between genes taken from two different individuals andcording to a probability distribution determined by the
SSw[ithin](	) � �i,j,u(Xij:u � Xi.:u)2 measures divergence be-mutation model and then going forward in time adding

mutations one by one on each branch of the tree. The tween genes within the same individual (Xij:u is an indica-
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tor variable taking the value 1 if gene i of individual j the MSE for the slope values of the regression lines and
not for D�2 estimates. Thus, the following statistics wereis of allelic type u and the value 0 otherwise; Rousset

2000). Thus, â compares the genetic divergence of indi- estimated over all repetitions: (i) the mean relative bias
between the value of the slope and the expected value,viduals at distance r (numerator) to the divergence of
1/(4�D�2) [i.e., (observed slope � expected slope)/the two-gene copy within the individual (denominator),
expected slope]; (ii) the standard error on this relativewhich is essentially what the parameter ar does. Because
bias; and (iii) the mean square error [i.e., MSE � ((ob-stepwise mutations occur at microsatellite loci, a statistic
served slope � expected slope)/expected slope)2]. Thetaking into account the allele size might appear to be
bias and the MSE are relative values since they are com-attractive. However, Leblois et al. (2003) have shown
puted from the ratio of the observed to the expectedthat incorporation of allele size into the estimate of ar

value. We also computed the probability that the esti-gives unreliable results due to the high variance of the
mate of 1/(4�D�2) was within a factor of two from theestimates. Therefore, only the parameter ar described
expected value (i.e., in the interval [expected slope/2;in Equation 3 was used in this study.
2 � expected slope]).The generalized random selfing assumption made in

Spatial and temporal heterogeneities: One importantthis article implies that the identity within individuals
advantage of the generation-by-generation algorithm isis identical to the identity between juveniles competing
that virtually any demographic model including thosefor a site. More generally, D�2 is related to the parameter
with variations in time and space of demographic param-
eters can be easily implemented.�r

1 � �r

�
Q0 � Qr

((1 � Qw)/2) � Q0

, (4)
Temporal change in dispersal: We first studied the effect

of a simple decrease of dispersal capabilities in time.
where Qw is the probability of identity of genes within Decrease in dispersal under isolation-by-distance mod-
individuals, Qr is the probability of identity of two genes els can be modeled in various ways (i.e., changing various
in different individuals at distance r, and Q0 is the proba- parameters in the dispersal distributions). Here we con-
bility of identity of two genes in different individuals in sidered a decrease over time of the average squared axial
the same node (Rousset 2004, Equation 8.12). Without parent-offspring distance (�2). Two different dispersal
random selfing, â r is not the most relevant statistic. distributions with different �2 values were used, while
Rather one should estimate not only Qw but also Q0. all other parameters of the distribution (i.e., the global
Since there is only one adult per node of the lattice, Q0 shape of the distribution) remained unchanged. This
cannot be estimated directly from adults: it must be situation corresponds to a change in a landscape (e.g.,
approximated as the identity between close adults or a fragmentation) resulting in modifying the ability of a
(better) between close juveniles before competition species to move within this landscape (e.g., Brooker
(see Rousset 2004, Chap. 8, for further discussion). In and Brooker 2002). Simulations were run with a two-
this way, it is easy to adapt the methods considered in dimensional lattice of (500 � 500) nodes with one indi-
this article, but this is not considered further. vidual per node. A first dispersal distribution, given in

For each simulated data set, the value of the slope expression (2) with parameters
of the regression line between â and the logarithm of

M � 0.555 and n � 2.744 for 0 � k � 48, (5)geographical distance was computed. In the limit of low
mutation rates, the inverse of the slope is an estimate has a moderate �2 value (�2 � 4 in lattice units) and is
of the product 4�D�2 (Rousset 1997). High mutation the dispersal distribution from the present until the
rates should not result in a large sample bias as long time of change, Gc. A second dispersal distribution, with
as one focuses on local processes involving distances parameters M � 0.187 and n � 1.246 for 0 � k � 48
between sampled individuals, r � �/√2
. Beyond this corresponds to a very high �2 value (�2 � 100) and is
limit, the linear relationship between ar and the loga- the dispersal distribution from the time of change Gc

rithm of the distance holds less well (see Rousset 1997 until the time of the most recent common ancestor
for theoretical details). Thus, if the analysis is done on (TMRCA). Four simulations were run with Gc � 10, Gc �
a small geographical scale, the use of loci with high 20, Gc � 100 generations (going backward in time),
mutation rates such as microsatellites does not bias the and Gc infinite as baseline (i.e., no change in dispersal
estimation. This is illustrated by Leblois et al. (2003), features over time).
using simulations. Temporal change in density: A second category of fluc-

The quality of an estimator is usually assessed through tuations is temporal variations in density of individuals.
the computation of its bias and its mean square error We studied two simple situations: (i) a decrease in den-
(MSE). These measures are suitable when estimates sity from past to present (population bottleneck) and
have an approximately normal distribution but not (ii) an increase in density from past to present (popula-
when estimates are sometimes infinite. In the present tion flush). Such bottleneck or flush events are expected
case, a negative slope should be interpreted as an infi- to occur in endangered or invasive populations, respec-

tively. These situations were implemented in our simula-nite estimate of D�2. Therefore, we present the bias and
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TABLE 1

Models used to study the effects of density variation
in time on the estimation of 1/(4�D�2)

Density (no. of individuals
per lattice node)

From sampling From Gc to
Demographic change time to Gc the TMRCA Factor

Figure 1.—Schema of a demographic expansion with con-
stant density as modeled in this study. (a) The source popula-Bottleneck
tion from which a subpopulation (dark gray grid) is intro-Weak decrease 1 10 10
duced in an empty habitat (dotted arrow). (b) The emptyStrong decrease 1/9 10 90
habitat on which the introduced population spreads within a
few generations (solid arrows). In our simulations, two-dimen-Flush
sional habitats are represented on a torus and not on a planeWeak increase 1 1/9 9
square as in this figure.Strong increase 1 1/100 100

The number of generations, Gc, indicates the moment in
the past when the density variation occurred. TMRCA corre-

additional simulations with a 90-fold density increasesponds to the time of the most recent common ancestor of
(from 1/9 to 10 individuals per node) and a dispersalthe sampled genes.
distribution adapted to keep a constant �2 gave similar
results (results not shown).

For each case of density change considered, four sim-tions by changing the number of individuals per lattice
ulations were run, using a two-dimensional habitat ofnode over time. Four different lattice models were used:
(500 � 500) nodes with Gc � 10, Gc � 20, Gc � 100one with 1 individual per node, one with 10 individuals
generations, and Gc infinite as baseline. For each bottle-per node, one with 1 individual every 3 nodes in each
neck and flush case, we simulated a weak density varia-direction, and one with 1 individual every 10 nodes in
tion (10 and 9 times density change, respectively) andeach direction. These models correspond to densities
a strong density variation (90 and 100 times densityof 1, 10, 1/9, and 1/100, respectively. Having less than 1
change, respectively). In the case of bottleneck, the low-individual per node avoids the consideration of models
density models (1 and 1/9 individuals per node for weakwith a too high number of individuals per node (i.e.
and strong variations, respectively) were implemented
10) before or after a change in density, which would
from sampling time to Gc and the high-density modelsstrongly deviate from the concept of continuous popula-
(10 individuals per node) from Gc to the TMRCA. Intion to which the method of estimation applies. For
the case of density flush, the high-density models (1easier coding, we modeled densities lower than 1 indi-
individual per node) were implemented from samplingvidual per node, considering that a given proportion of
time to Gc and the low-density models (1/9 and 1/100nodes of the lattice are always “empty” (e.g., for a density
individuals per node for weak and strong variations,of 1/9, 8/9 of the nodes are empty). This is equivalent
respectively) from Gc to the TMRCA (Table 1).to a model with a larger lattice unit (e.g., a lattice unit

Spatial expansion with constant density: The third typethree times larger in each dimension for a density of
1/9 compared to the lattice unit for a density of 1). A of studied situation is a population expansion in space

with constant density of individuals (Figure 1). The pop-summary of the different density changes studied is
presented in Table 1. ulation introduced into an empty habitat is composed

of individuals that have evolved in a source populationFor the model with 1 individual every 9 nodes, we
adapted the dispersal distribution to keep a constant at equilibrium with some demographic features (i.e.,

density and dispersal distribution). The introduced pop-�2 � 4. Since dispersal may occur only between “non-
empty” nodes, the dispersal distribution parameters are ulation spreads within a few generations on an empty

two-dimensional habitat with the same demographicthen M � 0.299 and n � 4.159 for 0 � k � 48. For the
model with 1/100, 1, or 10 individuals per node, the dis- features as the source population. This situation corre-

sponds to the case of an introduced species that colo-persal distribution parameters are those used in the
previous section [cf. expression (5)]. We have not adapted nizes a new territory with similar ecological features to

that of its native territory. Before expansion (i.e., atthe dispersal distribution to keep a constant �2 � 4 for
the model with 1 individual every 100 nodes because it generation Gc), the introduced population is composed

of 100 individuals located on a (10 � 10) area, whichwas mathematically impossible to adjust this distribution
with a too small number of points in the distribution were sampled from a (10 � 10) area in the source

population, which itself evolved on a (160 � 160) lattice.(i.e., in this case, there are only five possible moves
in each direction between “suitable” nodes, which are From generation Gc to present, the introduced popula-

tion spreads over a lattice of (160 � 160) nodes. Thelocated at 0, 10, 20, 30, and 40 lattice units). However,
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Figure 2.—Schema of the spatial density heter-
ogeneities as modeled in this study. (a) A small
high-density zone (dark gray grid) strictly corre-
sponds to the sampling area (black grid) on a
two-dimensional habitat with a lower density
(light gray grid). (b) A large high-density zone
(dark gray grid) includes the sampling area (black-
grid) on a two-dimensional habitat with a lower

density (light gray grid). (c) A large high-density zone (dark gray grid) is present on a two-dimensional habitat with a lower density
(light gray grid); the sampling area (black grid) is located outside the high-density zone. In our simulations, two-dimensional habitats
are represented on a torus and not on a plane square as in this figure.

entire (160 � 160) matrix is potentially occupied in sample area (Figure 2a), and (ii) a larger high-density
zone of (40 � 40) nodes, which includes the (20 � 20)two generations. At sampling time, as in the previous

sections, 100 individuals were taken from an area of nodes sample area (Figure 2b). We were particularly
interested in assessing whether the estimated density(20 � 20) nodes located outside the area of introduc-

tion, the distance between the introduction area and corresponds to the density on the sampling area (i.e., the
local density) or whether the estimation is influencedthe sampling area being equal to 50 nodes. The forward

dispersal distribution parameters are those given in ex- largely by the density surrounding the sampling area
(i.e., the neighboring density). This was performed bypression (5) and correspond to a �2 � 4. Four simula-

tions were run with Gc � 10, Gc � 20, Gc � 100, and Gc alternatively considering that the expected D�2 value
corresponded to a density of 10 (local density) and 1infinite as baseline.

Spatial density heterogeneities: The situations we choose (surrounding density) individuals per node. An addi-
tional simulation was run with a single large high-densityto study reflect the fact that biologists usually collect

individual samples in localities where they are easy to zone of (40 � 40) nodes located outside the sampling
area, the distance between the high-density and sam-collect, that is, in high-density areas. Hence, we consid-

ered a lattice model with homogenous density except pling zones being equal to 50 nodes (Figure 2c).
on a squared area where the density of individuals is
higher (Figure 2). In such models with density heteroge-

RESULTSneities in space, backward and forward dispersal differ.
Each lattice node has a backward distribution that de- Interpretation of observed bias: Observed bias in our
pends on the density of each surrounding node (e.g., simulations might be attributable to (i) a bias, inherent
each node being at a distance less or equal to the Kmax to the method, due to the effect of a high mutation
step). Those surrounding nodes correspond to all loca- rate on the parameter value (this we call “mutational
tions from which genes could have come in one genera- bias”), (ii) a bias due to the deviation of the estimates
tion (forward in time). Since those nodes are occupied relative to the parameter value considering a finite sam-
by different numbers of individuals and because nodes ple of individuals and loci (this we name “small sample
occupied by more individuals contribute potentially bias”), and (iii) a bias introduced by the demographic
more to the number of immigrants that reach a given fluctuations studied. Additional details on the small
node, we have to weight each term of the backward sample and mutational biases can be found in Leblois
dispersal distribution by the number of individuals of et al. (2003). All results in the present study should be
the node from where immigrants have come. Let Nx,y,G interpreted taking into account the small sample and
be the number of individuals at node (x, y) at generation mutational biases that can be observed in the simula-
G. Then for any node (x, y) the probability bdx,dy for a tions without demographic fluctuations that were in-
gene to move backward dx steps in one direction and cluded in all situations studied as baseline (Gc infinite).
dy in the other is equal to For example, in the case of a reduction of density (bot-

tleneck, Table 3), the mutational and small sample bias
bdx,dy �

N(x�dx),(y�dy),G · fdx,dy

�dx,dy�Kmax
N(x�dx),(y�dy),G · fdx,dy

. (6) is large when considering an intermediate-density model
(baseline simulation for a weak reduction) and much
lower when considering a low-density model (baselineSimulations were run for a sample of 100 individuals
simulation for a stronger reduction). This difference istaken every two nodes from an area of (20 � 20) nodes
due partly to the different densities of individuals inevolving in a (160 � 160) lattice. Density is one individ-
the two baseline simulations, which influence the globalual per node, except on a (n � n) zone including the
level of genetic diversity in the sample. Leblois et al.sample area where density is 10 individuals per node.
(2003) indeed showed that differences in genetic diver-Two cases were considered: (i) a small high-density zone

of (20 � 20) nodes, which strictly corresponds to the sity have a substantial effect on the estimation of D�2.
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TABLE 2

Effect of a temporal reduction of dispersal on the estimation of 1/(4�D�2)

Gc Infinite 100 20 10

Bias (standard error) 0.444 (0.0062) 0.0923 (0.0081) �0.0795 (0.0076) �0.234 (0.0074)
MSE 0.228 0.0743 0.0642 0.109
2� coverage 0.995 0.989 0.965 0.876

The number of generations, Gc, indicates the moment in the past when the dispersal reduction occurred.
Bias is the mean of relative bias of each run [(observed slope � expected slope)/expected slope]; MSE is the
mean of the square error of each run [((observed slope � expected slope)/expected slope)2]; 2� coverage
corresponds to the probability that the estimate of 1/(4�D�2) was within a factor of two from the expected
value (i.e., in the interval [expected slope/2; 2 � expected slope]).

Temporal change in dispersal: Simulation results ation Gc until the TMRCA. For a 10 times reduction of
density, the method is quite robust when the densityshow that the bias due to a reduction of dispersal is

negative (Table 2) and thus corresponds to an overesti- change occurred 20 or more generations ago. The bias
and the MSE are low (�10%) and almost 99% of themation of the present time D�2. This result is in agree-

ment with a transition from a high D�2 value (�2 � 100) estimations are within a factor of two of the present-
time D�2 value. For very recent density change (e.g.,during the past generations (i.e., before Gc) to a much

lower value after Gc (�2 � 4). In other words, the method Gc � 10) the bias is substantial. However, the MSE re-
mains low and 
90% of the estimations are still withinof D�2 estimation has a memory of temporal changes

in dispersal. However, this memory is short term since a factor of two of the present-time D�2 value.
The effect of reduction of density is more markeda reduction of dispersal 100 generations ago gave only

a slight negative bias compensated by the positive small for a stronger change in density (i.e., 90 times density
reduction). For a very recent density reduction (i.e., 10sample and mutational biases (cf. first column of Table

2). Moreover, even for a recent reduction of dispersal generations ago), the negative bias reaches 50% and
only 24% of the estimations are within a factor of two(Gc � 10), the bias is �25% (i.e., �0.25), a relatively low

value compared to the high amplitude of the dispersal of the present-time D�2 value. For Gc � 100, the bias
and the MSE become similar to the baseline. Note thatchange. Standard error of the estimation also remains

low for all Gc values, and for changes older than 20 all estimations are within a factor of two of the present-
time D�2 for Gc � 20. Therefore, even for large recentgenerations, 
95% of the estimations are within a factor

of two of the present-time D�2. Hence, our simulations density reductions, the method appears to be relatively
robust.generally show that the precision of the present-time

D�2 estimation is relatively robust to temporal changes Temporal increase in density (demographic flush):
The positive bias observed in Table 4, which corre-in dispersal.

Temporal reduction of density (bottleneck): The neg- sponds to an underestimation of the present-time D�2,
reflects the lower population density from generationative bias observed in Table 3 (i.e., overestimation of

D�2) reflects the higher population density from gener- Gc until the TMRCA. For a small increase in density (10

TABLE 3

Effect of a weak (10 times density reduction) and strong (90 times density reduction) bottleneck on the estimation of 1/(4�D�2)

Intensity Gc Infinite 100 20 10

Weak Bias (standard error) 0.444 (0.0062) 0.0990 (0.0070) �0.0625 (0.0064) �0.222 (0.0061)
MSE 0.228 0.0588 0.0449 0.0868

2� coverage 0.995 0.997 0.989 0.915

Strong Bias (standard error) �0.0138 (0.0042) �0.0743 (0.0027) �0.330 (0.0017) �0.526 (0.0012)
MSE 0.0175 0.0128 0.115 0.278

2� coverage 1 1 1 0.238

The number of generations, Gc, indicates the moment in the past when the density reduction occurred. Bias is the mean of
relative bias of each run [(observed slope � expected slope)/expected slope]; MSE is the mean of the square error of each run
[((observed slope � expected slope)/expected slope)2]; 2� coverage corresponds to the probability that the estimate of
1/(4�D�2) was within a factor of two from the expected value (i.e., in the interval [expected slope/2; 2 � expected slope]).
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TABLE 4

Effect of a weak (9 times density increase) and strong (100 times density increase) density flush
on the estimation of 1/(4�D�2)

Intensity Gc Infinite 100 20 10

Weak Bias (standard error) 0.444 (0.0062) 0.315 (0.040) 0.685 (0.043) 1.4 (0.046)
MSE 0.228 1.72 2.33 4.07

2� coverage 0.995 0.45 0.381 0.238

Strong Bias (standard error) 0.432 (0.00644) 0.648 (0.0094) 2.24 (0.015) 3.91 (0.0193)
MSE 0.228 0.508 5.27 15.8

2� coverage 0.999 0.89 0.00262 0

The number of generations, Gc, indicates the moment in the past when the density increase occurred. Bias
is the mean of relative bias of each run [(observed slope � expected slope)/expected slope]; MSE is the
mean of the square error of each run [((observed slope � expected slope)/expected slope)2]; 2� coverage
corresponds to the probability that the estimate of 1/(4�D�2) was within a factor of two from the expected
value (i.e., in the interval [expected slope/2; 2 � expected slope]).

times), the bias and the MSE are high even for a rela- within a factor of two of the expected D�2 value. Hence,
a spatial expansion as modeled here has only a short-tively ancient flush (e.g., Gc � 100). The proportion of

estimations being within a factor of two of D�2 remains term and limited influence on the present-time D�2

estimation; the method is precise even for very recentsmall (�50%) even for Gc � 100. The effect of the
flush also increases substantially with the intensity of expansions.

Spatial heterogeneity in density (sampling within athe density change. For a 100-fold density change and
for Gc � 10, the bias reaches 391% and none of the high-density zone): Table 6 shows that D�2 estimation

is not robust when the high-density zone is small andestimations are within a factor of two of D�2 (Table 4).
Hence, although the bias and the MSE decrease when strictly corresponds to the sampling area. The bias and

MSE values indicate that in this case the low-densityGc increases, the estimation remains unreliable for both
100- and 10-fold density change. These results contrast area surrounding the sampling area strongly influences

the D�2 estimation, which becomes a bad measure ofsharply with those pertaining to bottlenecks and dis-
persal changes. both local density (i.e., the density on the sampling area)

and surrounding density (i.e., the density surroundingSpatial increase in population size with constant den-
sity (demographic expansion): All measures (bias, MSE, the sampling area). It can be seen, however, that two

times coverage probabilities, although globally low, areand proportion of estimates within a factor of two) indi-
cate that the estimation of the present-time D�2 is good higher when referring to the local rather than to the

surrounding area density as expected (D�2 value 0.018when the spatial expansion occurred 20 or more genera-
tions ago (Table 5). For Gc � 10 only, an 8% negative vs. 0.001). This suggests that there is a tendency for the

method to measure the local rather than the sur-bias is observed, which corresponds to an overestimation
of the present-time D�2 (Table 5). However, the MSE rounding density. This trend becomes obvious when

looking at results for a larger high-density zone (Tableis very small (10%) and 97% of the estimations are

TABLE 5

Effect of a spatial expansion

Gc Infinite 100 20 10

Bias (standard error) 0.430 (0.0076) 0.387 (0.0126) 0.133 (0.0111) �0.0824 (0.0101)
MSE 0.243 0.23 0.08 0.0581
2� coverage 0.989 0.98 0.996 0.972

The number of generations, Gc, indicates the moment in the past when the spatial expansion occurred. The
expansion occurred without density and dispersal changes. Bias is the mean of relative bias of each run
[(observed slope � expected slope)/expected slope]; MSE is the mean of the square error of each run
[((observed slope � expected slope)/expected slope)2]; 2� coverage corresponds to the probability that the
estimate of 1/(4�D�2) was within a factor of two from the expected value (i.e., in the interval [expected
slope/2; 2 � expected slope]).
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TABLE 6

Effect of spatial heterogeneities in density

Local density Surrounding density

Spatial heterogeneity Estimation Control Estimation Control

Small high-density zone
Bias (standard error) 2.11 (0.017) 0.45 (0.025) �0.689 (0.0017) 0.430 (0.0076)
MSE 4.76 0.83 0.477 0.243
2� coverage 0.018 0.65 0.001 0.989

Large high-density zone
Bias (standard error) 0.393 (0.013) 0.45 (0.025) �0.861 (0.0013) 0.43 (0.0076)
MSE 0.330 0.83 0.743 0.243
2� coverage 0.9 0.65 0 0.989

Large high-density zone outside sampling area
Bias (standard error) 0.447 (0.00752) 0.43 (0.0076) 13.5 (0.0752) 0.45 (0.025)
MSE 0.256 0.243 187 0.83
2� coverage 0.99 0.989 0 0.65

Sampling was done on a small or large high-density zone of (20 � 20) and (40 � 40) nodes, respectively.
Local density, the expected density is the local density (i.e., density in the sampling area); surrounding density,
the expected density is the surrounding density (i.e., around the sampling area). Controls correspond to a
homogenous lattice with density being the local or the surrounding density for the local and surrounding
estimation cases, respectively. Bias is the mean of relative bias of each run [(observed slope � expected slope)/
expected slope]; MSE is the mean of the square error of each run [((observed slope � expected slope)/
expected slope)2]; 2� coverage corresponds to the probability that the estimate of 1/(4�D�2) was within a
factor of two from the expected value (i.e., in the interval [expected slope/2; 2 � expected slope]).

6). In this case, the bias and the MSE are much lower about changes on timescales of a few tens of generations
when considering the local rather than the surrounding in the past, which may be very recent by standards in
zone for the D�2 value. About 90% of the estimates are population genetics, but not for lots of species undergo-
within a factor of two of the local D�2 value, while none ing demographic changes due to ongoing human im-
of them are within a factor of two of the surrounding pact. Moreover, the numbers of generations defining
D�2 value. The third case of a large high-density zone the time of demographic change in this study should
located outside the sampling area (i.e., 50 nodes away) be considered as indicative of only the length of the
confirms this result (Table 6). Hence, our simulations effect of the demographic changes studied rather than
generally show that the method estimates local demo- as absolute reference numbers. As a matter of fact, the
graphic parameters and is robust for such measurement persistence in time of the effect of demographic fluctu-
when the density is relatively homogenous around the ations strongly depends on various features of the demo-
sampling area (e.g., over an area equal to four times the graphic model (e.g., �2 values) and disequilibrium situa-
sampling area). tions. It is thus preferable to consider general trends

rather than precise numbers for each situation. For clar-
ity, those trends have been summarized in Table 7.

DISCUSSION The robustness of the method of Rousset (2000) to
several temporal and spatial demographic fluctuationsThis work is the first one focusing on the study of
somewhat contradicts previous studies dealing with theevolutionary disequilibrium situations in the complex
study of evolutionary disequilibrium. In their review,but realistic population model of a continuous popula-
Koenig et al. (1996) concluded that estimations of dis-tion evolving under isolation by distance. Within the
persal parameters from genetic data give ideas aboutlimits of the situations studied in this article, and with
past rather than present dispersal and gene flow, sothe exception of the case of a density flush, we found
that direct methods, such as mark-recapture methods,that temporal and spatial fluctuations of demographic
should give a better estimation of actual dispersal pa-parameters, if not too strong and not too recent (i.e.,
rameters. Boileau et al. (1992) similarly showed thatmore than, say, 20–50 generation in the past), have a
hundreds or thousands of generations are required tolimited influence on the estimation of local and present-
erase the effects of colonization processes on “FST-liketime demographic parameters with the method of

Rousset (2000). It is worth noting that we are talking estimates” from allozyme data in large populations, con-



1090 R. Leblois, F. Rousset and A. Estoup

TABLE 7

Qualitative summary of the effects of different temporal and spatial heterogeneities

Effect on D�2 estimation

Bias

Demographic change Sign Intensity 2� coverage Duration

Temporal Dispersal increase Positive Medium Good Short
(25 times)

Density decrease Positive Low to medium Good to poor Short
(10–90 times)

Density increase Negative High Poor Medium
(9–100 times)

Spatial Local high-density zone Negative Low (local) to high Good (local) to poor NA
(10 times) (surrounding) (surrounding)

Temporal and spatial Spatial expansion Negative Low Good Short

Low intensity, mean relative bias �50%; high intensity, mean relative bias 
100%; good, 2� coverage 
85%; poor, 2� coverage
�85%; short duration, few (10–20) generations; medium duration, 
100 generations; NA, not appropriate.

cluding that estimates of gene flow from genetic data pected to be more problematic. Moreover, under isola-
tion-by-distance models, the more distant the demes areshould be taken with care. We fully agree that temporal

demographic fluctuations in a population are likely to on the lattice, the more the period � is expanding to
the past, increasing the effect of past demographic pa-have a strong and persistent effect on some population

genetics statistics and methods. However, the present rameter fluctuations (Slatkin 1994; Rousset 2004).
Because the present method focuses on local differentia-study shows that some indirect methods and genetic

markers give accurate estimations of present-time den- tion and thus on recent evolutionary processes corre-
sponding to a narrow recent past zone, it is again logicalsity and dispersal features even when the demographic

history includes relatively recent demographic changes. that past demographic fluctuations have limited effects
on the estimation of the present-time and local D�2The general robustness to spatial and temporal heter-

ogeneities of the present F -statistic-based method can with this method. The same reasoning can be used to
understand why the method gives estimates of the localbe interpreted using arguments from the coalescence

theory and analytical treatment available in this field. demographic parameter values rather than estimates of
the surrounding demographic parameter values. As theValues of F -statistics, under the assumption of low muta-

tion rate, can be deduced by comparing the distribu- period � is short in the models considered, F -statistics
depend mainly on genetic events (migration, coales-tions of coalescence probability for different pairs of

genes (e.g., pairs from the same deme and pairs from cence, mutation) that occurred in a recent past and,
because dispersal is localized, at a local geographicaldifferent demes; e.g., Rousset 2002). These distribu-

tions differ essentially by an excess of coalescence proba- scale. Therefore, the estimate of D�2 by the present
method should correspond to the local demographicbility for the most related genes, this excess being concen-

trated in a brief period � in the recent past. F-statistics parameter values on the sampling area and should not
be much influenced by demographic features of zonesthus depend mainly on differences between the distribu-

tions of coalescence probability for different pairs of that are far away from the sampling area.
Close examination of our results brings up severalgenes in recent generations. As the sensitivity of F -statis-

tics values to past demographic fluctuations is also re- issues. Our simulations showed that, for the study of
invading species, the present method should give pre-lated to this recent time period, past demographic fluc-

tuations have less effect when the time period � is short. cise estimates of the present-time D�2 provided that
no demographic flush occurred during the expansionThis recent time period � is shorter when high dispersal

rates and/or low deme size are considered (Rousset process. This is an interesting feature of the method,
which makes it appropriate to study invasive organisms2004). Hence, if models with small deme size and high

migration rates, such as isolation by distance between for which demographic features are similar in the newly
founded population and in the original source popula-individuals where each deme is of size two genes, are

considered the influence of past demographic fluctua- tion. Our simulations further showed that if a change
in dispersal occurred during the invasion process, thistions on the estimation of demographic parameters

from F -statistics is limited. By contrast, under the classi- new dispersal feature should translate quickly in the
estimation of the present-time D�2. On the other hand,cal island model with large deme size and low migration

rates, the effect of past demographic fluctuations is ex- density flushes (and to a much lower extent population
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