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We evaluate the performance of maximum likelihood (ML) analysis of allele frequency data in a linear array of
populations. The parameters are a mutation rate and either the dispersal rate in a stepping stone model or a dispersal rate
and a scale parameter in a geometric dispersal model. An approximate procedure known as maximum product of
approximate conditional (PAC) likelihood is found to perform as well as ML. Mis-specification biases may occur
because the importance sampling algorithm is formally defined in term of mutation and migration rates scaled by the total
size of the population, and this size may differ widely in the statistical model and in reality. As could be expected, ML
generally performs well when the statistical model is correctly specified. Otherwise, mutation rate estimates are much
closer to mutation probability scaled by number of demes in the statistical model than scaled by number of demes in
reality when mutation probability is high and dispersal is most limited. This mis-specification bias actually has practical
benefits. However, opposite results are found in opposite conditions. Migration rate estimates show roughly similar
trends, but they may not always be easily interpreted as low-bias estimates of dispersal rate under any scaling. Estimation
of the dispersal scale parameter is also affected by mis-specification of the number of demes, and the different biases
compensate each other in such a way that good estimation of the so-called neighborhood size (or more precisely the
product of population density and mean-squared parent—offspring dispersal distance) is achieved. Results congruent with
these findings are found in an application to a damselfly data set.

Despite lasting efforts, estimating dispersal rates from
genetic data remain a challenging problem. Many uncer-
tainties remain about the various complicating factors that
may invalidate inferences. It is not clear how many param-
eters can be estimated accurately and whether the results
will be robust to various factors such as the mode of evo-
lution of the markers, ancestral history of the species, and
populations unaccounted for in the statistical model (e.g.,
Slatkin 1994; Arbogast et al. 2002; Rousset 2007 for
reviews).

Nevertheless, in spatially subdivided populations,
some statistical patterns depend mainly on the recent his-
tory of the population. This makes it possible to develop
statistical methods that specifically exploit these patterns,
and therefore could be robust to various uncontrolled fac-
tors (e.g., Slatkin 1993, 1994). For example, previous
works on moment-based methods (i.e., methods based
on Wright’s Fst and similar measures) have shown that re-
liable estimation of some dispersal parameters is possible
under isolation by distance because such estimation may
be based on genetic patterns independent of unsampled
populations, of mutation models, and robust to past demo-
graphic fluctuations (Slatkin 1993; Rousset 1997; Leblois
et al. 2004).

On the other hand, moment methods may throw out
too much of the information in the data. Much recent efforts
have been focused on developing maximum likelihood
(ML) methods (Beerli and Felsenstein 1999, 2001; Bahlo
and Griffiths 2000; Stephens and Donnelly 2000; Beerli
2004; de Iorio and Griffiths 2004b; de Iorio et al. 2005),
which in principle use more information in the data than
moment methods. Although ML methods could allow to
estimate more parameters and to estimate them more accu-

Key words: dispersal, maximum likelihood, coalescence, isolation
by distance, microsatellites.

E-mail: Rousset@isem.univ-montp2.fr.

Mol. Biol. Evol. 24(12):2730-2745. 2007
doi:10.1093/molbev/msm206
Advance Access publication September 24, 2007

© The Author 2007. Published by Oxford University Press on behalf of
the Society for Molecular Biology and Evolution. All rights reserved.
For permissions, please e-mail: journals.permissions@oxfordjournals.org

rately, the same general robustness concerns arise as for any
other method. The effect of populations that are connected
by dispersal to the sampled ones, but that are not accounted
for in the statistical model, has received some attention
(Beerli 2004; Slatkin 2005). Beerli (2004) investigated
the effect of a third population on the estimation of dispersal
between 2 populations, for sequence data (100,000 bp per
individual sampled). Slatkin (2005) considered predicting
the magnitude of these effects from a simple algebraic ar-
gument based on expected coalescence times of pairs of
genes. This argument predicts a bias when there is some
estimator bias in Beerli’s simulations, but the predicted bias
is an overestimate of the observed bias. Slatkin also notes
that the method cannot be applied to all possible dispersal
patterns and sampling designs, in particular in a linear array
as will be considered below.

So far, performance of ML methods has been analyzed
in models with up to 4 demes (Beerli and Felsenstein 2001;
Beerli 2006). The ultimate aim of the present work is the
application and assessment of ML methods in much larger
networks of subpopulations. The type of data considered
here are allelic counts at high mutation rate loci such as
many microsatellites.

Estimation is expected to be less precise when the
number of parameters increases, and this effect is already
apparent in a 4-demes model (Beerli 2006). We therefore
focus on dispersal models with few parameters, such as
the stepping stone/isolation by distance models on a homo-
geneous lattice, rather than the whole migration matrix
approach implemented, for example, in Migrate (Beerli
and Felsenstein 1999, 2001). We have implemented the al-
gorithm of de Iorio and Griffiths (2004a, 2004b) to handle
the case of localized dispersal (isolation by distance) in a lin-
ear habitat. This scenario has been chosen because it is a rel-
atively simple starting point for a larger simulation project,
yet it is realistic enough to have allowed reasonably accu-
rate statistical analyses on real data sets. Although the iso-
lation by distance models neglect spatial heterogeneities,
these do not appear to be a major concern in a number



of applications, for example, allowing good estimation of
“neighborhood size” by nonlikelihood methods (Rousset
1997, 2000; Sumner et al. 2001; Fenster et al. 2003; Watts
et al. 2007), and a similar result will be achieved here using
the data of Watts et al. (2007). We attempt to analyze sam-
ples from large sets of subpopulations, not only because of
the problem of unaccounted populations but because, as
shown in these references, many natural populations may
be described as a large network of small subpopulations
connected by a large amount of dispersal, even up to the
point where no subpopulations are distinguished from in-
dividuals or mating pairs (“continuous” populations).
Moreover, the same works confirm the theoretical expecta-
tion that such conditions are favorable to the reliable esti-
mation of dispersal rates.

We will see that although ML estimation under models
of 10-15 populations is easy based on the algorithms of de
Iorio and Griffiths, it becomes progressively more difficult
as the number of subpopulations increases, and analysis of
an average data set would require weeks on most desk com-
puters when more than 40 subpopulations are considered.
Hence, after a check of the method and assessment of nu-
merical factors that may affect the precision of the estimates
in simple conditions, we will consider the effects of unac-
counted subpopulations on the analyses and a fast approx-
imation to ML.

Under a nearest neighbor stepping stone model, unac-
counted populations will be found to have little effect, but if
dispersal distance follows a geometric distribution, stronger
mis-specification effects will be obtained. Irrespective of
mis-specification, the shape of the dispersal distribution
will appear difficult to estimate. We will also test less thor-
oughly the effect of some other deviations from the model,
which will appear to have less impact on performance.

A fast heuristic approximation, product of approxi-
mate conditional (PAC) likelihood (Li and Stephens
2003; Cornuet and Beaumont 2007), will be shown to yield
results very close to those based on likelihood itself and will
allow a more thorough investigation of possible causes of
poor performance as well as of a wider range of parameter
values, in particular higher dispersal among smaller demes,
and lower mutation rates.

Methods
Design of Simulation Study
Population Models

As a first approximation, we may consider many spe-
cies as collections of clusters of subpopulations (or of
“demes”) with abundant dispersal within each cluster
and relatively much less dispersal among clusters. We con-
sider the analysis of one such cluster. Typical values for
the biological scenarios envisioned here would be deme
size ~1-100, dispersal probability ~0.5, and therefore ex-
pected number of immigrants ~0.5-50 per deme. In order
to maintain enough genetic variability within the total pop-
ulation, we must also consider a large array of demes and/or
large deme size and small migration rates.

These different requirements somehow conflict with
each other and with constraints on computation times.
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Thus, we first consider large haploid deme size (400), small
dispersal probability (0.01), and high mutation probability
(1072 per gene copy per generation), so that we can check
performance in a small network of populations; then we
will take benefit of the fast PAC likelihood method and will
increase lattice size, reduce deme size, increase dispersal,
and decrease mutation probability. In all cases the proba-
bility of dispersal to signed distance k # 0 can be described
as

Ta—gghl M

for given g. g is thus a shape parameter which describes
dispersal distances. The stepping stone model is the limit
case g —0.

Some effects of dispersal on population processes,
such as cline shape, are well quantified by the axial
mean-squared parent—offspring distance, 6> (e.g., (Barton
and Gale 1993). In the geometric dispersal model,

(1-¢)?

The product Dc?, where D is population density, also
determines spatial variation in the probability of identity of
genes (isolation by distance: Sawyer 1977 for the most
accurate results). Although different views have been held
about the reasonable magnitude of o and Do?, these
parameters can be low in natural populations. In such
organisms, as Dipodomys rodents (Rousset 2000; Winters
and Waser 2003), humans in the rainforest (Wood et al.
1985; Rousset 1997), Chamaecrista fasciculata (Fabaceae;
(Fenster et al. 2003), American marten (Broquet et al.
2006), and Gnypetoscincus queenslandiae skinks (Sumner
et al. 2001), concurrent genetic and dem0§raphic estimates
of Do? were 2.5 < . <40, and such is 6° when measured
in unit of interindividual distance (such that D = 1). In the
latter units, o2 will be 7.5 < . < 840 in our simulations.
Note that in the linear habitats considered in this work,
Da? values cannot be compared unless they are measured
in the same spatial unit because density scales as
distance ™! hence Do? scales as distance. In this work, it
will be reported as No?, that is, in units of array step
(except for the actual data analysis).

The assumed mutation probability is 1073 or 10_4,
which is not unrealistic for microsatellite markers (re-
viewed in Ellegren 2000; see also e.g., Vigouroux et al.
2002; Gusmao et al. 2005). At high mutation rate loci,
the allelic type of rare immigrants from distant populations
should be uncorrelated to that of resident individuals, so the
mutation events can also represent immigration from distant
clusters of populations (Kimura and Weiss 1964). Only the
10~ mutation probability will be considered in the smallest
populations simulated as it is required to maintain substan-
tial variation. Both mutations rates will be considered in
larger populations, where this 10-fold variation in mutation
probability will have notable consequences for the interpre-
tation of the results.

The K-allele mutation model will be assumed in the
data-generating simulations, except for a few cases where
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Table 1
Notation
Population (data-generating) model
N Deme size (gene copies or haploid individuals)
o’ Mean-squared parent—offspring distance
ng Number of demes
Vop Dispersal probability between demes o and B in de Iorio and Griffiths (2004b)
m Total dispersal probability (this work)
Additional parameters of statistical model
N Number of demes in statistical model
Nt Total haploid size in statistical model (N in de Iorio and Griffiths, 2004b)
N, Effective size in statistical model (haploid equivalent)
0 = 2N1p Scaled mutation rate

myg = 2N1vep

Numerical parameters

Scaled dispersal rate in between demes o and f in de Iorio and Griffiths (2004b)

n Number of ancestral trees (IS algorithm) or sequences (PAC likelihood algorithm)

p

Number of parameter points in which likelihood or other statistics are computed

a 10-allele—bounded stepwise mutation model (SMM) will
be considered in order to test the robustness of the analyses
when the marker mutational process deviates from the one
assumed in the statistical model.

Statistical Models

In its most general form the statistical model consid-
ered here allows estimation of 3 parameters: a mutation rate,
amigration rate (scaled probability of immigration), and the
g parameter describing the geometric distribution of dis-
persal distances. We also investigated the performance of
the estimator obtained by plugging the ML estimates of
Nm and g in the parametric expression for No* in terms
of these parameters (eq. 2).

Most simulations assume localized dispersal on a lin-
ear array of populations, with absorbing boundaries, much
as in the population models under which samples are sim-
ulated. However, in practice this either assumes that the po-
sitions of the sampled demes in the linear array are known
or this forces the user to make assumptions about this po-
sition. Hence, estimation under a circular lattice model will
also be considered.

Sampling Design

We assume that samples are taken as follows: in the 4-
demes model, in each deme; in the 100-demes models, at
positions 50, 52, .. ., 50 + 2(ny — 1) where ny is the number
of demes sampled; in the 1,000-demes models, at positions
500, 502, ..., 500 4 2(ny — 1) for ng = 4 or 10 and at posi-
tions 500, ..., 519 for n, = 20.

The Algorithms and their Implementation
Notation

Some notation is summarized in table 1. Note that de
Torio and Griffiths (2004a, 2004b) denote N, the total size of
the population, which we here denote Nr.

Computation of the Likelihood

The detailed features of the algorithm have been de-
scribed in de Iorio and Griffiths (2004a, 2004b) and are
not repeated here, although some guidance is given. In this

section, their notation is followed, unless indicated otherwise.
Their algorithm computes likelihood under the structured
coalescent models described by Notohara (1990) and
Herbots (1997), which are limit processes, for large deme
size and low migration rates, of the classical migration ma-
trix models (e.g., Nagylaki 1983; Rousset 2004, p. 54 sqq).
In these algorithms, one considers an absorbing Markov
chain over the state n of the set of ancestral lineages of
a sample of genes from the time of sampling up to the most
recent common ancestor. n is characterized by the allelic
type and the geographic position of the lineages. A sample
can be represented as the sequential addition from O to n
genes, where the probability that any additional gene is
of a given type will depend on the state of genes already
present. The likelihood can thus be written in terms of
any given sequence of gene states s; (allelic type and geo-
graphic position) leading to the observed sample, as

" ﬁn(slhll—l)v (3)
()11

where m(s/n,_;) is the probability that an additional
sampled gene s, is of a given type, given the configuration

n,_; already generated by the sequence, and <z) is the

multinomial coefficient in terms of the allelic counts n (de
Torio et al. 2005). de Iorio and Griffiths define an
importance sampling (IS) algorithm considering the
successive events (mutation, migration or coalescence)
that may affect the ancestral lineages of the sample. m(-)
terms can be defined for migration and mutation events
from the above ones (e.g., the m for a migration event
leading from some configuration “n + migrating gene in
deme 1”7 to “n + migrating gene in deme 2” is defined
from the ratio of the n(-Im) for addition of the migrating
allele to deme 1 and of the n(-In) for its addition to deme
2). The IS algorithm is defined in terms of approximations
7t to the w’s. If A=m, one iteration of this algorithm (i.e.,
one ancestral history) is enough to compute the likelihood.
In general, the m’s cannot be computed exactly so that
7t # m. In this case, the IS algorithm may still allow
consistent estimation of the likelihood, and fewer iterations



of this algorithm should be needed the closer the 7’s are to
the m’s. Poor choice of & may result in inefficient
estimation of the likelihood (requiring too many iterations
of IS for practical applications) or even in inconsistent
estimation (Stephens and Donnelly 2000). To overcome
these limitations, de Iorio and Griffiths proposed to use the
following ft. Denote 7(j|o,,n) the coefficients considered
when a lineage of allelic type j in deme o is affected by
some event. They are obtained as solutions of linear
equations of the form:

[nmq;l + my+0]7t(j|o, n)

=g, + 0 Pyft(ilonm) + Y moph(j[Bm)  (4)
i B#a

(de Iorio and Griffiths 2004b, eq. 2.11) for each j and a.
Here ¢, is the deme size relative to the total population
size, and (Pj;) is a matrix of relative forward mutation
rates. In the present work, we assume a 1-dimensional
lattice, with nyq demes of equal size, so that ¢, = 1/ng.

Solving a system of Z linear equations typically re-
quires approximately O(Z%) computations (e.g., Press
et al. 1988; Golub and van Loan 1996). The #(j|o, n)
are the solutions of a system of Kn,, equations of the form
(4) and most of the computation time is spent solving such
systems of equations. This is the limiting step in consider-
ing scenarios with large numbers of alleles or of demes.
Ways of dealing with a large number of alleles are dis-
cussed below. The increase in computation time with the
number of demes actually scales higher than nfn because
the number of events in the history of a sample increases
as n, increases. Iterative methods of solution of linear sys-
tems of equations can speed up the computations with a neg-
ligible loss of accuracy when compared with the direct
solvers. A preconditioned conjugate gradient method
(e.g., Golub and van Loan 1996) was found useful for
ny > 60 in this study.

Computation time can be substantially reduced if the
above system of equations can be broken down in disjunct
subsystems of equations. This occurs in particular in the
symmetric K-allele model (KAM) that was the only model
assumed in the estimation procedure in this work. In the
KAM, P; = 1/K (for i = j included if we follow de Iorio
and Griffiths’ convention). ) . ft(i|ot, n)=1, so that the mu-
tation term on the right-hand side of equation (4) simplifies:
for each allele type j, the recursion (4) can be written as

[”a‘I;I + my+6]ft(jlo, m)— Z mypf(j|B, m)
p#a

=naiqy +0/K. (5)
Hence, for each allele j, the #(jlo,n) are obtained as
a solution of the system of nq4 linear equations for oo = 1,
.., ng. The system of Kny equations separates in K
disjunct systems of ngq equations, only one of which is
solved once a given allelic type has been chosen. Systems
of ngq linear equations also arise for more complex
mutation models if the mutation and genealogical pro-
cesses are independent (as is usually assumed for neutral
genetic variation): for each right eigenvector r; = (r4;) of
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(P), one has to deduce equations for ) _; ri;ft(j|o,, n) from
equation (4). For each eigenvector ry, there are nq such
equations. Solutions of such a system can then be back
transformed to obtain solutions of equation (4). This
procedure is illustrated for an unbounded SMM, where it
amounts to Fourier analysis, in de Iorio et al. (2005), but it
increases computation time in comparison to the KAM and
was not considered here. Instead, the performance of
KAM-based estimation on data following a bounded SMM
will be presented.

Another potential solution to reduce the computation
time is bridge sampling (Meng and Wong 1996; Fearnhead
and Donnelly 2001), in which the proposal distributions
(hence the ft’s) are not computed independently for each
parameter point, but only for a few driving values. There
could be a trade-off between the cost of computing the
7t’s for each point and the potential loss in efficiency of like-
lihood estimation when suboptimal proposal distributions
are used, and the efficiency of de Iorio and Griffiths’ pro-
posal distribution has initially drawn us away from methods
such as bridge sampling. However, this could prove useful
in later applications.

The PAC Likelihood Heuristics

Cornuet and Beaumont (2007) proposed to use de
Torio and Griffiths’s 7t directly as a substitute to 7 in equa-
tion (3) and to average over different sequences of genes
leading to the sample (see also RoyChoudhury and
Stephens 2007). This follows a similar suggestion by Li and
Stephens (2003) who described this procedure as PAC like-
lihood and as maximum PAC likelihood, the procedure of
maximizing this product with respect to parameters.

There is no general result showing that the PAC likeli-
hood algorithm consistently estimates the likelihood. It
clearly does so when fi=m, in which case simulation is
not necessary. 7 is known in particular when the stationary
joint distribution of allele frequencies in different demes is
known. This occurs in the n-coalescent with parent-
independent mutation (Stephens and Donnelly 2000; de
Torio and Griffiths 2004a) and can be extended to the island
model with the same mutation model and a large number of
islands. On the other hand, the distribution is unknown for
stepwise mutation and/or for isolation by distance. Never-
theless, simulation results of Cornuet and Beaumont and
RoyChoudhury and Stephens for stepwise mutation suggest
that PAC likelihood may be used as a practical substitute to
likelihood, and it is much faster to compute because the
number of systems of linear equations to be solved for each
sequence is the sample size, whereas in the IS algorithm, the
number of linear systems will be increased beyond this in
proportion to the number of mutation and migration events
in an ancestral history.

As will be seen, the PAC likelihood statistic is not
a consistent estimator of the likelihood. On the other hand,
the variance of estimation of the PAC likelihood for a given
number of iterations of the PAC likelihood algorithm is
lower than the variance of estimation of likelihood from
the same number of iterations of the IS algorithm, as
was already observed by Cornuet and Beaumont and
RoyChoudhury and Stephens. This reduced variance more
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than compensates for the small bias in estimating likeli-
hood. So, even if maximizing likelihood is better, in terms
of mean square error (MSE), than maximizing the expec-
tation of PAC likelihood, the estimation of demographic
parameters by maximum PAC likelihood may appear better
than ML estimation when both the likelihood and the PAC
likelihood are estimated with some error. We will indeed
find that maximum PAC likelihood estimation is at least
as good, if not slightly better than ML estimation by the
IS algorithm.

Likelihood Surface and ML Estimation

The likelihood in any given parameter point is esti-
mated with some error rather than computed. This prevents
the straightforward application of most algorithms for find-
ing the maximum of a function. A convenient way to ad-
dress this problem is to interpolate the likelihood surface
from the estimated points by predicting it under some prob-
abilistic model for the shape of the surface. If the surface is
assumed to be the realization of a Gaussian process, this
prediction can be achieved by techniques known as kriging
(e.g., Cressie 1993). Both prediction uncertainty and pre-
diction bias, when the Gaussian assumption does not hold,
are expected, but in most cases this appears to be a minor
source of inaccuracy, as can be tested by increasing the den-
sity of points on which interpolation is based. We use krig-
ing as in de Iorio et al. (2005; see also Sacks et al. 1989;
Welch et al. 1992): for each point in parameter space, the
likelihood is estimated by simulations of n, trees. This is
repeated at n,, points in parameter space. Kriging fits a sur-
face to the estimated likelihood values in the different pa-
rameter points. This is an estimate of the likelihood surface,
of which the maximum may be sought by any of the usual
algorithms. We used the package fields (Fields Develop-
ment Team 2006) in the R statistical environment (R De-
velopment Core Team 2004) for the kriging computations.
The Nelder—Mead algorithm as implemented in the R optim
function was used to find the maximum of the estimated
likelihood surface.

As in de Iorio et al. (2005), points are selected by Latin
hypercube sampling (a form of stratified random sampling).
The number of points is adjusted as function of time con-
straints and efficient use of hypercube sampling. The range
of parameter space explored has to be provided by the user.
In general, one should first explore a wide parameter space
then focus the search around the first estimate obtained.
Here, preliminary work (not shown) helped select param-
eter ranges within which all estimates would be found,
and only results for these ranges are presented because they
give the relevant information about the performance of ML
estimation per se. Alternatively, a more automated iterative
procedure has been used where a wide parameter range is
used in the first iteration and the parameter range used in the
later iterations is narrowed around the previous estimate ob-
tained for each sample. In particular, a 2-steps procedure
has been used recurrently, where estimates were first de-
duced from 512 points; 512 additional points were sampled
from an approximately 10-fold smaller parameter space
around the first estimates for each sample, and final esti-
mates are deduced from the 1024 points thus obtained.

Computer Implementation

The C++ program used in all data analyses will be
distributed as a free software, MIGRAINE, available
through URL  http://kimura.univ-montp2.fr/~rousset/
Migraine.htm. It writes the required R code and can call
R interactively to perform the above iterative procedure.
It has been run on PCs under Windows and Linux,
a Sun workstation, SGI Origin 3800 and IBM Power4 par-
allel computers of the CINES (www.cines.fr), and several
Linux PC clusters. Some representative computation times
are given in table legends.

Programs Checks

The likelihood estimation procedure was checked
against standard formulas for probability of identity of pairs
of genes (e.g., Maruyama 1970a; Malécot 1975) adapted to
the KAM (e.g., Crow and Aoki 1984; Rousset 2004) and
taken in the limit N— o for Ny and Nm fixed as in the co-
alescent algorithm. The simulation program generating sam-
ples has been previously described (Leblois et al. 2003,
2004) and has been checked as described in these papers.

Comparison of Performance of Different Implementations

There are 2 sources of inaccuracy of estimates. One is
the inaccuracy of the ML estimate relative to the parameter
value. The other is the inaccuracy of the numerical method
in locating the ML estimate, which may be due to consid-
ering not enough replicate trees per point in the IS compu-
tation or not enough points. It is possible to evaluate the
inaccuracy due to the numerical method by comparing in-
dependent runs on the same data (de Iorio et al. 2005).
However, it would have been too time consuming to do
so in all cases. Rather, the impact of numerical settings
on performance will be checked in several cases.

Distributions of estimators (or distributions of differ-
ences in cases of paired simulations) were compared pri-
marily through the estimation of differences in MSE or
relative MSE, and further by estimation of differences in
bias and variance. Maximum differences consistent with
the data were deduced from 95% confidence intervals
(CIs) for effects on MSE, bias, and variance constructed
by the “bootstrap corrected and accelerated” (BC,) method
of DiCiccio and Efron (1996). However, because it would
be inconvenient to report all CIs, synthetic bounds on max-
imum absolute effect size and/or P values derived from the
confidence curves are reported when they bring the main
information together with estimates reported in the tables.

Results

Numbers in brackets refer to the numbered cases in the
different tables. For the parameters Nm, Nu, and N 02, we
present relative bias and relative root MSE (/MSE) as this
may be more important than absolute bias and MSE in prac-
tice. These relative error measures cannot apply for g (in
particular in the nearest neighbor stepping stone model,
g = 0), for which bias and MSE are directly computed.
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Table 2
Performance of Estimation in a Nearest Neighbor Stepping
Stone Model

Ny relative Nm relative
bias (relative bias (relative
VMSE) VMSE)
Linear array of 4 demes of 400 individuals
K=4
[1] 0.04 (0.28) 0.11 (0.36)
[2] (n, = 5,000) 0.04 (0.31) 0.11 (0.33)
[3] (n, = 5,000, 10 loci) —0.01 (0.22) 0.09 (0.25)
[4] (n, = 1,000, 50 loci) 0.11 (0.19) —0.03 (0.12)
[5] PAC —0.002 (0.28) 0.09 (0.33)
K =10
[6] 0.52 (0.60) —0.04 (0.25)
[7] (n, = 300) 0.53 (0.61) —0.08 (0.23)
[8] (50 loci) 0.47 (0.48) —0.11 (0.13)
Linear array of 100 demes of 400 individuals
K =4
[9] (np, ny) = (512, 10) 0.33 (0.72) 0.10 (0.53)
[10] (np, ny = (512, 30) 0.27 (0.67) 0.12 (0.51)
[111* (np, n) = (5,000, 30) 0.25 (0.63) 0.16 (0.53)
[12] ny, = 100 0.30 (0.50) —0.04 (0.32)
[13] PAC(n,, n) = (512, 10) 0.26 (0.73) 0.06 (0.48)
[14] PAC(n,, ny) = (512, 30) 0.29 (0.75) 0.08 (0.49)
[15] PAC(n,, n,) = (512, 300) 0.28 (0.74) 0.07 (0.49)
[16] PAC(n,, n) = (5,000, 30) 0.25 (0.69) 0.10 (0.51)
[17] PAC, n,, = 100 0.19 (0.42) —0.12 (0.24)
K =10
[18] 0.40 (0.51)  —0.005 (0.29)
[19] Bounded SMM —0.15 (0.25) —0.06 (0.29)

Note.—Sixty samples were analyzed except 30 for case [4] and 120 for cases
[9] and [18].

“ Likelihood computations for case [11] took ~84 min per sample on 2.66
GHz processors, whereas the otherwise identical PAC likelihood analysis took less
than 7 min per sample.

Stepping Stone Dispersal

Numerical results are presented in table 2. For all cases
in this table, 0 = 0.001 and m = 0.01 (Nu = 0.4, Nm = 4).
The following values apply to all cases unless noted other-
wise: sample sizes were 5 loci, 4 demes sampled, and 60
genes sampled per deme; sampled ranges of parameter val-
ues were 2N € [0.125, 5] and 2Nm € [0.125, 20]; n,,, = 4,
n, = 512, and n, = 10.

The precision would be excellent for most practical
purposes. For 5 different analyses of the same data sets
[1]-[5] (4-allele model), the analysis with the largest num-
ber of loci (50, case [4]) stands out as the one with the low-
est MSE for both estimates (as could be expected) as well as
the lowest Nm bias, but also the highest N bias. For an
identical total computation effort, reducing the number
of loci and increasing the number of points analyzed is less
efficient (cases [3] vs. [4], all P < 0.039 except for N
MSE). Similar observations are made for a population of
100 demes. For the 10-allele model, MSEs and variances
are likewise reduced after a 10-fold increase in the number
of loci (case [8] vs. [6]); all P < 0.006).

For a population of 4 demes, a stronger bias and MSE
in N estimation is observed for data generated under the
10-allele model (case [6]) than under the 4-allele model. For
100 demes, estimation is markedly improved in the 10-
alleles model relative to the 4-alleles one (cases [18] vs.
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[9]). The latter observation is more in keeping with the fre-
quent observation that highly polymorphic markers allow
more powerful inferences, including about structured pop-
ulations (power of tests of differentiation, Goudet et al.
1996; estimators of Fgr, Raufaste and Bonhomme 2000;
assignment, Estoup et al. 1998 and Waples and Gaggiotti
2006; Do? estimation, Leblois et al. 2003). However, the
estimation biases are reduced by less than 15% (CI bound
on bias reduction; P = 0.023 for Nm bias, 0.24 for Np). One
reason for persistent N biases with increased sample size
(most notably when the number of loci is increased) is that
the observed number of alleles & in a 1-locus sample is often
lower than K, so the program analyzes the data under a k-
alleles model rather than under the correct 4- or 10-alleles
model. This also readily explains the comparatively poor
performance in the 4-demes, 10-alleles cases as some al-
leles are more likely to be absent in smaller populations.
There is no obvious way to avoid the resulting biases, un-
less external information is provided by the user. Thus, this
must be taken as an inherent bias of the method. Further,
this will be less of a problem in later applications with larger
total population sizes (so that k£ approaches K), so no at-
tempt was done to correct for this problem in the analyses.

Beyond the number of loci, the number of parameter
points considered may also set a limit to the precision that
can be reached whatever the number of loci is. However, in-
creasing the number of points from 512 to 5,000 (case [2] vs.
[1]) reduces all relative measures of performance by at most
4.5% (upper CI bound, significant only for Nn MSE and var-
iance). Finally, the performance of maximum PAC likeli-
hood is at least as good as the ML analysis (case [5]
vs. [1], all relative effects in favor of PAC likelihood
and <0.065; P = 0.003 for Nu bias and >0.24 otherwise).
Another test of a numerical factor (the number of trees sam-
pled by the IS algorithm, case [7] vs. [6]) shows weak effect
(for MSEs, at most a 6% reduction for Nm, P > 0.22, al-
though this hides a bias-variance trade-off, with maximum
absolute bound 7.8% and P = 0.001 on Nm bias).

Thus, the performance of estimation appears limited
more by sample size than by numerical aspects of the algo-
rithms and not worsened by the use of the PAC likelihood
approximation. These 2 observations will recur in the
sequel.

Estimation of Scaled Parameters under Mis-Specification

We now focus on the effect of unaccounted popula-
tions. We assume that unsampled demes in between the
sampled ones are known and properly accounted for. Other-
wise, serious mis-specification effects would occur, but
these should be relatively easy to anticipate and/or avoid.
By contrast, we will consider the less trivial effect of un-
accounted populations outside the spatial range of sampled
populations. Indeed, we will consider the effect of popula-
tions that hardly exchange any migrant directly with the
sampled populations.

First, we should make clear which parameters are to be
estimated when some demes are unaccounted. The coales-
cent algorithm is based on approximations in terms of
scaled parameters, Nt and Nt in a stepping stone model,
and is expected to perform well (in the sense of asymptotic
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efficiency, at least) when the statistical model and the true
population structure match each other, that is, when ny =
ny,. But it is not obvious how it will perform when these do
not match. Consider, for example, that 4 demes have been
sampled out of a large population of ny = 100 demes, and
that only n,;, = 10 demes are considered in the statistical
model, so that likelihood is computed for different values
of Nnym. Will ML estimates of Nn,m be close to Nnm,
close to Nym = Nngm, or show a more erratic behavior? In
the latter case, the analysis could be useless. In the second
case, it would not be possible to infer the dispersal proba-
bility m (if N is known) or the number of immigrants Nm,
unless there is additional information about n4. Indeed, nq is
often little more than a convenient abstraction as total pop-
ulation sizes fluctuate over the time span of coalescence of
gene lineages. The inferences will therefore be most infor-
mative in the first case, when estimates approach Nnm,
and likewise for Nnp so that estimators of Nm and N
can be deduced (and given moderate demographic informa-
tion, N can be taken out).

This conclusion is a bit caricatural. One could argue
that the most informative scaling for mutation and for mi-
gration differ from each other. However, for the parameter
values of cases [11] and [18], the simulations indeed show
that estimates of Nngm and Nngp approach Nn,m and
Nny 1. To make this clear, estimates of Nngm and Nngp will
be both divided by the (necessarily known) n,, and the re-
sulting values will be compared with Nm and Np values in
order to assess performance. When we take these values as
the estimands, the mis-specification bias appears low (as
long as w = 107, as later simulations will emphasize). This
turns a substantial mis-specification bias into a benefit of the
method.

Under this interpretation, some mis-specification ef-
fects remain apparent by comparison with the correctly
specified analysis (cases [12] vs. [9]; with both reduced
variance and bias of Nm estimates and reduced variance
of N estimates, all P < 0.032). The correctly specified
PAC likelihood analysis also yields clearly better results
than all incorrectly specified ML and PAC likelihood anal-
yses (cases [17] vs. [9]-[16]). PAC likelihood estimates of
Nm are less biased than ML ones (P < 0.043 in all 4 com-
parisons [9] vs. [13], [10] vs. [14], [11] vs. [16], and [17]
vs. [12]), except for Nm in the latter case. However, effect
sizes are <10% overall. Numerical settings again appear
to be a comparatively minor source of error in estimation,
the most notable effect being a reduction in variance of
Nu estimates when a higher number of points is computed
(CT for this reduction is 1.1-26.5% for case [9] vs. [11],
less clear cut for case [13] vs. [16]). No further attempt
was made to further sort out the diverse effects of model
mis-specification, small sample size, and PAC likelihood
approximation and their interactions as they all appear
small.

Comparison of cases [18] and [9] also show, as in pre-
vious 10-alleles/4-alleles comparisons, a lower MSE and
variance of estimators with 10 alleles than with 4 (all
P < 0.017), yet the Np bias is not reduced (CI for relative
effect —0.07 to 0.19), which was explained as an effect of
mis-specification of the number of alleles in the mutation
model. Because this mis-specification should be less of

Table 3
Performance of Estimation for Geometric Dispersal in
a Linear Array of 100 Demes

N relative Nm relative
bias (relative  bias (relative g bias
N vMSE) VMSE) (VMSE)
Samples of 5 loci
g=0
[20] 10 0.42 (0.54) —0.17 (0.30) 0.12 (0.14)
[21] PAC — 0.26 (0.39) —0.21 (0.28) 0.16 (0.21)
g=02
[22] — 0.52 (0.65) 0.04 (0.34) —0.01 (0.14)
[23] PAC — 0.39 (0.49) 0.03 (0.34) —0.02 (0.16)
[24] 25 0.30 (0.46) 0.08 (0.38) —0.02 (0.18)
[25] PAC 40 0.04 (0.25) 0.01 (0.31) —0.02 (0.18)
[26] PAC 100 0.05 (0.24) 0.001 (0.30) —0.01 (0.18)
g=05
[27] 10 1.01 (1.13) 0.23 (0.40) —0.15 (0.29)
[28] PAC — 0.86 (0.97) 0.16 (0.33) —0.13 (0.27)
[29] 16 0.77 (0.90) 0.21 (0.39) —0.21 (0.32)
[30] PAC — 0.68 (0.85) 0.13 (0.31) —0.14 (0.27)
[31]¢ 25 0.65 (0.84) 0.20 (0.42) —0.18 (0.30)
[32] PAC — 0.48 (0.68) 0.15 (0.35) —0.16 (0.29)
[33] PAC 40 0.20 (0.61) 0.12 (0.25) —0.12 (0.25)
[34] PAC 100 0.20 (0.61) 0.09 (0.27) —0.12 (0.26)
g = 0.5, 20 loci
[35] PAC 10 0.76 (0.79) 0.07 (0.17)  —0.07 (0.19)
[36] PAC 100  —0.02 (0.31) 0.07 (0.20)  —0.04 (0.20)

Note.—Thirty multilocus samples of 4 sampled demes and 60 genes sampled
per deme were analyzed, except 60 samples for cases [20] and [27]-[32].
“ Case [31] required about 24 h 30 min per sample on 2.66 GHz CPUs.

a concern in sample’s larger populations, and given our fo-
cus on microsatellite data, all further simulations in this pa-
per are for K = 10 alleles.

Effect of Mutation Model

We have considered a KAM for fast computation, but
of course this may not be realistic. Because estimating pa-
rameters under a more general mutation model appears un-
practical, we evaluated the impact of a bounded stepwise
mutation process on the estimation procedure (case [19]).
The total population is also mis-specified as in the KAM
(case [18]). Compared with the latter, there is some reduc-
tion in MSE of N estimates due to an ~55% change in
mean value (this is highly significant due to the low vari-
ance of estimates, P < 5.107"). The dispersal estimates are
robust to mis-specification of the mutation model. Similar
results will be obtained for other data generated under the
SMM.

Geometric Dispersal

So far only the nearest neighbor stepping stone model
has been considered, and mis-specification of the number of
demes seemed to have little effect. We now consider
whether we can estimate the parameters of a more general
dispersal distribution. For these analyses, we assume that
dispersal follows a geometric dispersal model described
by equation (1). The performance of estimators of Nm, Ny,
and ¢ when ¢ = 0, 0.2, and 0.5 is presented in table 3.
For all cases in this table, N = 400 haploid individuals
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Fic. 1.—Differences between PAC likelihood and IS estimation.
Each of the 9 columns shows 3 independent estimates of the PAC
likelihood (A) and 3 estimates of the likelihood ((J) for one given
parameter point and one given sample. For each of them, the 3 replicates
are barely distinguishable because the variance of estimation is very low.
The 9 columns represent groups of 3 parameters points for each of 3
samples. Samples and PAC likelihood analyses are as in case [34] but
with n, = 1,000. IS analysis are for the same statistical model and same 7,.

per deme; samples were generated assuming a 10-alleles
model; n, = 30 and n, = 2197 or 5,000; and sampled ranges
were 2N € [0.125, 5], 2Nm € [2.5, 20], and g € [0, 0.8].

The estimation of the parameter g appears very poor
when n,, = 10. For g = 0, the estimator is biased upward
(case [20]). A bias is expected for a MLE as the parameter
value is at the boundary of the feasible parameter range, but
in the present case this bias is high. For g = 0.5, the esti-
mator of g is biased downward (case [27]). The weak bias
observed for g = 0.2 may be the midpoint between the pos-
itive bias for lower values of g and the negative bias for
higher value of g. For g = 0, there is also a slightly higher
absolute bias of Nm estimates (CI 0.093-0.255) relative to
analyses of the same data under the stepping stone model
(cases [18] vs. [20]).

These biases may result both from model mis-
specification, small sample size, and inaccurate estimation
of likelihood. Effects of model mis-specification can be evi-
denced only by comparison with analyses assuming the true
number of demes (100), and such analyses can be done rou-
tinely only with PAC likelihood. However, the value of the
likelihood statistic under the “true” model was compared
with the PAC likelihood in a few points, and there are
demonstrable differences (fig. 1). Yet, maximum PAC like-
lihood performance appears at least as good as ML perfor-
mance (cases [20]-[32] in table 3) as the differences are
mostly in the direction of lower MSE by maximum PAC
likelihood. For maximum PAC likelihood when n, =
100 and g = 0.5 (case [34]), Nm is relatively well estimated,
N estimates remain biased upward, and g estimation is not
precise enough to be worth considering in practice. Thus,
there is little information about g in the data. Accordingly,
we will increase sample size (in particular, the number of
demes sampled) in later simulations. With the present
sampling design, performance is as good with 40 as with
100 demes, but there is evidence of mis-specification on
Nm and N estimation as the bias and MSE of their estima-
tors decrease with n,, increasing from 10 to 40.

Not only the number of demes but also the position of
samples relative to the total habitat may be mis-specified.
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Table 4
Edge Effects
Nu relative ~ Nm relative
bias (relative bias (relative g bias
/. vMSE) VMSE) (VMSE)
Position effect, g = 0.5, 5 loci
[37] PAC” 25 0.20 (0.59) 0.11 (0.25) —0.12 (0.25)
Analyses under circular array model
g = 0,5 loci
[38] 10 0.32(043) —0.17 (0.29)  0.06 (0.08)
g = 0.2, 5 loci
[39] 10 0.44 (0.59) —0.06 (0.34) —0.07 (0.14)
[40] 25 0.21 (0.35) 0.14 (0.41) —0.07 (0.14)
[41] PAC 40  0.04 (0.25) 0.01 (0.31) —0.02 (0.18)
[42] PAC 100  0.04 (0.25) 0.01 (0.31) —0.01 (0.19)
g = 0.5, 5 loci
[43] 10 0.86 (0.96) 0.17 (0.32) —0.28 (0.35)
[441° n, =120 10 091 (1.04) 0.17 (0.31) —0.31 (0.36)
[45] 25 0.53 (0.76) 0.19 (0.31) —0.22 (0.29)
[46] PAC 25 0.22 (0.59) 0.10 (0.25) —0.13 (0.25)
[47] PAC 40  0.20 (0.61) 0.12 (0.25) —0.12 (0.25)
g = 0.5, 20 loci
(481" 10 0.84 (0.87) 0.11 (0.25) —0.28 (0.31)
[49] PAC 100 0.02 (0.29) 0.06 (0.19) —0.06 (0.17)

Note.—Samples and simulation conditions as in Table 3.

“ Samples set in positions 10, 12, 14, 16 of the array versus 3, 5, 7, 9 in other
analyses with n,, = 25.

" The analysis of each sample from cases [44] and [48] (5,000 points) takes 12
CPU hours on 2.66 GHz processors.

Estimation performance may differ whether samples are
set close to the assumed edge of the habitat or in its center
as shown in one example (case [37] vs. [32], differing in
particular through the Np mean, CI on relative effect
0.16-0.39). Analyses under a circular array model were in-
vestigated as a practical alternative to having to choose the
position of samples on a linear lattice (table 4 and fig. 2).
Overall, the performance depends somewhat on whether
a circular or linear array is assumed, but this does not affect
the previous conclusions (including the consistently smaller
bias of maximum PAC likelihood estimates relative to
MLE:s across simulation conditions, and the improvement
in Ny estimation when n,, is increased). As could be ex-
pected, the highest discrepancies between linear and circu-
lar analyses are observed for the lowest n,, and highest g
value and should be generally negligible relative to other
causes of error. As before, strong biases may be observed
for the lowest n,, values, and increasing the number of rep-
licate ancestral trees ([44] vs. [43]) or the number of loci
(case [48]) has little effect, confirming that the biases are
mostly due to mis-specification. The differences between
circular and linear models are very small for n,,, > 40 (with
most CI widths for effects on means narrower than 0.01 in
the PAC likelihood analyses; see fig. 2 legend).

Larger Samples

The previous results show that unaccounted popula-
tions become important when there is some “long-dis-
tance” dispersal (g > 0; keeping in mind that g = 0.5
implies only limited long-distance dispersal, compared with
many biological studies). Further, even with a correctly
specified model, there is less information about g in the data
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Fic. 2.—Interaction of edge effects with n,,. This figure compares
selected results from tables 3 and 4. (Relative) bias (A) and vMSE (x)
are shown for the 3 estimated parameters. Simulation conditions were
identical in the paired linear and circular analyses, including the sequence
of the random number generator (for cases [20] and [32], this may involve
only a subset of all replicates considered in table 3). Hence, with PAC
likelihood, the same sequences of 7’s were computed, the only difference
being the equations that the fi’s solve; whereas in the ML analysis, a 7t
value at some step affects the further sequence of @t values computed. This
results in a much smaller variance of differences between paired PAC
likelihood analyses compared with paired ML analyses (paired PAC
likelihood analyses may remain statistically different even when the
differences are not visible).

than about the migration rate. Overall, Nm was relatively
well estimated in most cases, estimation of mutation rate
was affected by mis-specification, and estimation of g was
affected both by mis-specification and by lack of power.

To increase power, both larger number of demes sam-
pled and of loci were considered (table 5). As previously,
there is no evidence of mis-specification with 40 demes in
the statistical model. The performance of maximum PAC
likelihood (with 5 loci, case [51]) or of ML estimation (with
10 loci, case [50]) is excellent. Similar results are obtained
with n, = 10 or 100 sequences (case [52] vs. case [51], all
P > 0.059, all CI bounds on effects <0.074) for PAC likeli-
hood computation, confirming that a low n, is enough.
Good performance is confirmed in the case g = 0.2 (case
[56]). However, if samples come from a 1,000-demes array,
a slight bias reappears for N estimates (case [53]), whereas
a more substantial bias appears if the true mutation rate is
reduced to 10~* (case [54]). The latter phenomenon will be
investigated more thoroughly below. Finally, analysis of
data generated under a bounded SMM shows an ~50% re-
duction in mutation rate estimates but no notable effect on
dispersal estimation (case [55]).

Table 5
Performance of Estimation for Geometric Dispersal

Nu relative  Nm relative

bias (relative bias (relative Bias
vMSE) vMSE) g (VMSE)
[50]* IS 0.04 (0.25) 0.08 (0.17) 0.5 —0.05 (0.14)
[51] PAC 0.02 (0.29) 0.01 (0.13) — —0.02 (0.15)
[52] PAC, n, = 100 0.01 (0.24) 0.03 (0.13) — —0.04 (0.14)
[53] ng = 1,000, PAC  0.17 (0.33) —0.01 (0.16) — —0.05 (0.15)
[54] PAC, p = 107* 0.77 (0.99) 0.03 (0.18) — —0.09 (0.13)
[55] SMM, PAC —0.54 (0.57)  0.11 (0.25) — 0.006 (0.14)
[56] PAC —0.08 (0.17) 0.10 (0.3) 0.2 0.04 (0.12)

Note.—For each sample analyzed, 60 genes were sampled at each of 5 loci (10
in case [50]) in each of 10 demes out of a linear array of 100 demes (except 1,000
for case [53]). The mutation probability was 10> (except 10~ for case [54]). ny, =
40 and n, = 10 except 100 for case [52]. Other simulations settings were as in table
3. 2197 points were analyzed, except in case [50].

“1In case [50], 2 steps of 512 points were computed as described in the text.

Smaller Demes with Higher Dispersal

Our aim is to test the performance of the algorithms in
scenarios more representative of spatial structure at small
spatial scale. In this section, we consider samples from a pop-
ulation of 1,000 demes, with fewer individuals per deme and
higher dispersal rate. Twenty demes are sampled, so the
number of demes in the statistical model is always larger
than 20, and then ML analyses based on the IS algorithm
become extremely time consuming. Hence, only maximum
PAC likelihood is considered in all but one simulation.

The results are presented in table 6 and fig. 3. For g =
0.5 and n,, = 60, there are strong biases, in particular for
Np. Mutation and migration rates are overestimated,
whereas g is slightly underestimated. As before, simulation
conditions were varied to understand these biases. For n,,, =
60, increasing the number of loci yields reductions of var-
iance of estimators (all >50% for both case [58] vs. [62]
and case [61] vs. [60]) but no significant, or even consistent,
improvement in biases. Varying the number of points (cases
[57] vs. [59], [58] vs. [61], and [60] vs. [62]) or of replicate
sequences (cases [57] vs. [58] and [59] vs. [61]) has no de-
tectable effect, except for significant but still small effects (a
few percents at most on biases) for cases [60] vs. [62]. Only
increasing n,, to 200 demes does result in improved perfor-
mance, with reduction of N bias (CI on relative reduction
0.17-0.40) and of g bias (CI on reduction 0.007-0.06; N o’
bias is likewise reduced). Improvement in bias of the same
parameters for an identical increase in n,, is also apparent
for a higher level of dispersal (g = 0.75, case [68] vs. [71];
Ny relative reduction 1.05-1.35, g reduction 0.002-0.07),
although all biases are more moderate and less affected by
ny, for lower level of dispersal (g = 0.2, case [66] vs. [65],
all P > 0.59 for biases). Thus, the mis-specification prob-
lems previously encountered are met again, but at higher 7.,
values, when the total dispersal rate is increased.

Whether poor performance is due in part to the PAC
likelihood heuristics can only be assessed by comparison
with the ML analysis. One comparison was conducted
for n,, = 60 and g = 0.75 (cases [67] vs. [68]), and both
analyses yield very similar results, except that the PAC like-
lihood estimates of N are slightly less biased (0.03-0.15
relative reduction; MSE is reduced too). For both IS and



Table 6
Performance of Estimation under High Dispersal
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Nu relative

Nm relative No? relative

bias (relative bias (relative g bias bias (relative
N VMSE) vMSE) (VMSE) vMSE)
Samples from an array of 1,000 demes of 40 haploid individuals, with m = 0.25 (Np = 0.04, Nm = 10)
g = 0.5,Nc* = 60
[571 60 0.58 (0.74) 0.91 (1.05) —0.19 (0.23) —0.12 (0.29)
[58] (n, = 30) — 0.58 (0.76) 0.88 (1.01) —0.19 (0.21) —0.10 (0.29)
[59] (n, = 2197) — 0.61 (0.79) 0.92 (1.05) —0.18 (0.21) —0.08 (0.27)
[60] (n, = 30, n, = 2,197, 20 loci) — 0.56 (0.60) 0.86 (0.90) —0.18 (0.19) —0.09 (0.17)
[61] (n, = 30, n, = 2,197) — 0.56 (0.74) 0.94 (1.10) 0.18 (0.22) —0.08 (0.28)
[62] (n, = 30, 20 loci) — 0.53 (0.55) 0.95 (1.00) —0.20 (0.21) —0.12 (0.03)
[63] 200 0.27 (0.69) 0.83 (0.99) —0.16 (0.19) —0.05 (0.28)
[64] 40 1.26 (1.34) 0.96 (1.08) —0.19 (0.22) —0.06 (0.26)
g = 02,No* = 18.75
[65] 200 0.38 (0.52) 0.41 (0.52) —0.07 (0.08) 0.08 (0.22)
[66] 60 0.35 (0.44) 0.39 (0.45) —0.08 (0.08) 0.09 (0.21)
g = 0.75, N6 = 280
[67] IS — 1.51 (1.64) 0.77 (0.86) —0.04 (0.13) 2.10 (4.01)
[68] — 1.42 (1.55) 0.74 (0.84) —0.03 (0.13) 2.45 (4.30)
[69]1° IS — 1.57 (1.70) 0.75 (0.86) —0.07 (0.12) 0.59 (2.63)
[701° — 1.47 (1.60) 0.70 (0.78) —0.07 (0.11) 0.53 (2.58)
[71] 200 0.27 (0.61) 0.54 (0.59) —0.03 (0.07) 0.46 (1.05)
[72] SMM — —0.17 (0.44) 0.78 (0.86) —0.08 (0.11) 0.16 (0.70)

Note.—Estimation is by maximum PAC likelihood except for cases [67] and [69]. Except as noted, n, =

10, n, = 512 and sample sizes were 5 loci per sample,

20 demes sampled, and 20 genes sampled per deme. Thirty such samples were analyzed in each case, except 120 samples for cases [67]—[70]. The parameter ranges explored
were 2Np € [0.0125, 0.5], 2Nm € [2.5, 60] (except for g = 0.2 where 2Nm € [2.5, 40] was sufficient), and g € [0.05, 0.8] except g € [0.2, 0.999] when true g = 0.75.

“ Second step of 512 points after case [67].

" Second step of 512 points after case [68]. It took ~ 20 min per sample on 2.6 GHz 64-bit processors. First and second iterations required about 1,000 and 110 more

time, respectively, for IS computation than for PAC likelihood.

PAC likelihood methods, increasing the number of param-
eter points (cases [69] and [70]) markedly improved No?
estimation. For the other parameters, the distribution of es-
timates are shown in fig. 4; PAC likelihood was again only
slightly, though consistently, better than ML. Thus, the
PAC likelihood heuristics again appears as an excellent
substitute to likelihood estimation.

The effect of a bounded stepwise mutation process
was tested again (case [72]), and it was again found that
it yielded a reduction in mutation rate estimates and little
effect on other parameters.

Lower Mutation Rate

Performance was assessed for a lower mutation rate
(u = 107", still with relatively high dispersal rates and
small deme sizes (table 7 and fig. 3). For all cases in the
table, samples were simulated for an array of 1,000 demes
of 40 haploid individuals, with m = 0.25, 0.5, or 0.75 and
= 10"* (Vp = 0.004, Nm = 10-30). Estimation was by
maximum PAC likelihood with n, = 10, and Do” estimates
were compared with those obtained by the moment method.
Except as noted, sample sizes were 5 loci per sample, 20
demes sampled, and 40 genes sampled per deme; sampled
ranges were 2N € [0.00125, 0.25]; 2Nm € [2.5, 60], g €
[0.05, 0.8] when true g = 0.5 and g € [0.2, 0.999] when true
g = 0.75. Genetic diversity remains high in these simula-
tions. For example, in case [78], the probability of identity
in the samples was 0.245.

With respect to Ny estimation, for n,, = 60, the bias
appears high, but only following the previous decision to
measure biases relative to n,N| rather than relative to

ngNu, the mutation rate scaled by the true total size of
the population. For the highest dispersal, the bias is much
weaker when assessed relative to n,, N1, and thus estimation
performs more in accordance to the general definition of the
algorithm. Expectedly, the biases are reduced when n,, is
increased to 200, though still large in the highest dispersal
case. Again, data simulated under a bounded SMM (case
[84]) yield lower estimates of mutation rate.

Dispersal rate estimates are also substantially biased
but can be interpreted as low-bias estimates neither of
nynNm nor of ngNm. In particular, they do not scale as nq
in the highest dispersal case. Fsr-based estimates of Nm
could well be better than those derived under n, = 60.
The biases on Nm and g seem to compensate each other,
yielding low relative biases on No~ estimation. Most biases
are reduced when the number of demes is increased, but
additionally increasing the number of loci has little effect,
which again indicates that large biases are mostly due to
mis-specification.

No? estimates could be compared with those obtained
by a moment method (Rousset 1997). Following the clas-
sical bias-variance trade-off of likelihood estimators, the
PAC likelihood estimator generally has lower variance
but higher bias than the moment estimator. The PAC likeli-
hood estimator may have lower MSE overall, as one might
expect under well-specified models, but the trend is not
clear cut, which leaves room to speculate what would be
the “best” method in practical conditions. The comparison
could have been more favorable to the likelihood method
in simulation conditions with relatively large p/m as muta-
tion is expected to bias results of the moment method in
that case.
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FiG. 3.—Interaction of mutation with n,,. This figure compares
selected results from tables 6 and 7. (Relative) bias and v/ MSE are shown
as in Fig. 2. For each (i, n,,) combination, cases are ranked by increased
No? values.

No” estimation is better ceteris paribus with n,, = 60
(case [78]) than with n,, = 200 (case [82]) for the same data,
although the opposite effect of mis-specification holds for
the other parameters. This suggests that specifying a large
number of demes is less important for good estimation of
No? than for other parameters.

As usual, it is not a priori obvious to which extant a rel-
atively poor performance is due to numerical issues. In par-
ticular, for high g values, a minor error in finding the g MLE
results in a high error on No” estimates. This effect was
already apparent in cases [67]-[70], where increasing
the density of points analyzed markedly improved No? es-
timation. We have further tested the effect of numerical pa-
rameters in cases showing the poorest No* estimation
relative to the moment method. For n,, = 60, increasing
ne to 100 (case [77] vs. [76]) had no notable effect on
the conclusions, whereas when n,, = 200, increasing n,
to 50 (case [83] vs. [82]) substantially reduced the MSE.
Thus, mis-specification is the main determinant of poor
NG? estimation for low nm, whereas a higher number of
replicates become necessary for No? estimation with high
nm,. The latter conclusion was confirmed when the mutation
model is also mis-specified (cases [84]-[86]). The perfor-
mance notably improves when n, is increased from 10 to 50,
mainly due to improvement of a few outlying estimates. As
before, PAC likelihood performs as least as well as ML in
this case; MLEs for Nj and No? actually have higher MSE
(P < 0.027).

2N
60 H

50
40
30
20

ol

0.13 0.18 023 028 033 038

2Nm

60
50
40
30
20
10

314 417 521

60
50
40
30
20

044 053 061 070 0.79 0.87

Fic. 4.—Distributions of estimates by PAC likelihood and IS
estimation. The PAC likelihood distributions (case [70]) are laid over the
likelihood distributions (case [69]). The arrows mark the position of the
parameter values.

Application to Real Data

Watts et al. (2007) have compared genetic and demo-
graphic estimates of Dc? in the damselfly Coenagrion mer-
curiale along a linear habitat. The demographic estimate of
4Dc” (for D here being a density of diploid individuals)
derived from a mark—recapture study and corrected for var-
iance in reproductive success was 277,894 individuals.m.
Indirect estimates obtained from a sample of 240 individ-
uals and 14 loci by several variants of the regression method
based on pairwise comparison of individual genotypes
(Rousset 2000) ranged within 179,058-242,816, with a syn-
thetic CI 66,015-392,866.

In simulation conditions fitted to these data with re-
spect to sampling design, gene diversity, dispersal distribu-
tion, and total population size (Watts et al. 2007, case ¢ =
130), the relative bias and root MSE of Do? estimates
yielded by the é regression estimator were 0.93 and 2.55
(reduced to 0.67 and 1.31 when 3 outliers are taken out
of 200 replicates), and the other regression estimator con-
sidered yielded some negative estimates (for ease of com-
parison and as previously discussed in Leblois et al. 2003,
bias and MSE of the more Gaussian-distributed 1/(Dc?)
were instead reported in Watts et al.). These biases are
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Relative bias (relative vV MSE)

Ny relative bias Relative bias Bias
(relative v MSE) Nm (relative vMSE) g (VMSE) No? PAC Regression

ny, = 60

[73]¢ 8.19 (8.66) 10 1.01 (1.04) 0.75 —0.09 (0.11) 280 0.16 (0.54) 0.003 (0.50)

[741¢ 6.22 (6.46) 20 2.66 (2.99) 0.5 —0.32 (0.33) 120 0.05 (0.27) —0.08 (0.44)

[751° 11.56 (11.94) — 4.89 (5.77) 0.75 —0.28 (0.31) 560 0.13 (0.43) —0.04 (0.44)

[76]¢ 7.54 (1.78) 30 3.30 (3.43) 0.5 —0.30 (0.30) 180 0.36 (0.50) —0.08 (0.20)

771 7.95 (8.19) — 3.82 (3.97) — —0.34 (0.34) — 0.31 (0.46) —0.08 (0.20)

[78]" 12.53 (13.05) — 7.41 (8.21) 0.75 —0.38 (0.39) 840 0.09 (0.45) —0.06 (0.55)
ny, = 200

[79] 2.83 (3.01) — 0.79 (0.90) — —0.18 (0.21) 60 —0.12 (0.26) —0.08 (0.37)

[80] 2.85 (2.99) 10 0.66 (0.71) — —0.08 (0.10) 280 0.02 (0.44) 0.003 (0.50)

[81] (20 loci) 2.84 (2.89) — 0.61 (0.63) — —0.07 (0.08) — —0.06 (0.16) —0.04 (0.25)

[82]° 3.96 (4.84) 30 5.02 (5.31) — —0.30 (0.38) 840 0.18 (0.70) —0.06 (0.55)

[83]° 3.79 (4.07) — 3.66 (3.68) — —0.24 (0.25) — 0.12 (0.46) —0.06 (0.55)
Samples generated under SMM

[84] 2.37 (2.85) 10 0.73 (0.80) — —0.08 (0.11) 280 0.18 (0.92) —0.09 (0.57)

(8517 1.95 (2.45) — 0.74 (0.79) — —0.07 (0.10) — 0.17 (0.80) —0.09 (0.57)

[86]° 2.12 (2.71) — 0.71 (0.76) — —0.08 (0.10) — 0.13 (0.67) —0.09 (0.57)

877 1S 1.73 (1.82) — 0.87 (0.91) — —0.06 (0.08) — 0.34 (0.72)

Versus [86] (subset)® 1.39 (1.51) — 0.84 (0.87) — —0.07 (0.09) — 0.18 (0.45)

Note.—In each case, 200 samples were analyzed by the moment method, and 30 samples were analyzed by maximum PAC likelihood, except for cases [84] and [86]

(60 samples) n, = 512, except as noted.

“ For analyses with n,,, = 60, as well as case [82], where large biases were observed and difficult to anticipate, 2 steps of 512 points were computed as described in the
text. In the first step, estimates were deduced from 512 points in the range 2Np € [0.00125, 0.25], 2Nm € [2.5, 450], and g € [0.05, 0.999].

 Two-steps procedure, 7, = 100 after first step of analysis of case [76].
¢ Two-steps procedure, n, = 50 after first step of analysis of case [82].
4 Two-steps procedure, the first step being case [84].

¢ As case [85] but with n, = 50 in the second step.

7 In case [87], the first 10 samples of case [86] were analyzed by ML with n, = 256 and n, = 50. This computation takes about 13 CPU years on 2.8-GHz processors.

¢ Same 10 samples as in case [86].

largely small-sample ones as could be seen by comparison
with an estimate from 40,000 loci. More important though,
the CI deduced jointly from the 2 regression estimators
were little affected by such biases and had good coverage
properties (Watts et al. 2007). To analyze the same simu-
lated data by PAC likelihood, individual genotypes have to
be binned in artefactual demes. Here, 80 such demes were
defined exactly as described below for the actual data anal-
ysis. Geometric dispersal is still assumed in the statistical
model, which now implies mis-specification of the dispersal
distribution. Despite this, estimation performance is sub-
stantially improved as the maximum PAC likelihood has
a lower relative root MSE of 0.54 (bias is 0.8%; from 60
replicates).

We have reanalyzed the damselfly data by PAC like-
lihood. Here, the linear habitat was divided in n,, spatial
units of width 3500/(n,, — 1) m, the patch of habitat (the
“Lower Itchen Complex” in Watts et al. 2007, fig. 1) being
about 3500 m long. For n,, = 80, several gradually more
focused (in parameter space) analyses led to 4Dg? = 2159,
the unit being individuals.(bin width). When translated
back to individuals.m, this is 4Dg? = 95,645. Several
independent, less focused replicate analyses yielded likeli-
hood ratio CI =50,000-140,000 (fig. 5 shows one
such computation, where the Nb estimate is 92,039). Sim-
ilar computations yielded 4Dg? = 123,676 and 113,303
individuals.m for n,, = 5 and 20, respectively. Thus,
as did n, in the simulations, the bin width has little
effect on D> estimates, although it affects more the other
estimators.

Discussion
Performance of Estimation

In this work, we have investigated the performance of
ML estimation of mutation and dispersal parameters under
isolation by distance in a linear habitat, using de Iorio and
Griffiths’ IS algorithm. We have focused on the effect of
mis-specification of the number of demes. In the same
conditions, we have also found that the maximum PAC
likelihood approximation is practically as efficient as ML
analysis.

Beyond the simulation results reported in this ms,
we have considered some additional approximations
that would ease computations for large arrays of demes.
In particular, approximation of the remote ancestry of a sam-
ple by Kingman’s coalescent has been considered in 2-
dimensional models (Cox 1989; Cox and Durrett 2002;
Zihle et al. 2005), but for ancestors of genes uniformly
sampled on the lattice, rather than in a small part of it as
considered here. Even for uniform sampling, both analysis
(Cox 1989) and simulations (Wilkins 2004) suggest it is not
appropriate for linear habitats. In agreement with these re-
sults, we could not achieve good performance by such ap-
proximations while simultaneously reducing computation
time by a notable extent (details not shown).

Expectedly, there is good performance of ML in favor-
able conditions (no model mis-specification, large sample
size). In less favorable conditions, performance is affected
differentially for different parameters. Estimation of g is
often very poor (e.g., fig. 4). In general, the dispersal rate
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Fic. 5—PAC likelihood surface for the Coenagrion mercuriale data
set. Top: a contour plot of likelihood for 2Np = 0.4. Dashed lines are
lines of equal Nb values (50,000, 92,039, and 140,000 from left to right).
PAC likelihood analysis was computed for 2197 points with n, = 100
(requiring 52 CPU hours on 2.66 GHz processors). Bottom: a profile
likelihood ratio plot from the same PAC likelihood computation, derived
by profiling over (Nm, g) values for given neighborhood size (Nb). The
likelihood ratio relative to the maximum is shown. Confidence regions are
given by the % approximation for the profile likelihood ratio (Cox and
Hinkley, 1974, pp. 322 sqq). With 2 df, the 95% confidence region for
(2Np, Nb) is simply bounded by the 0.05 level for the profile likelihood
ratio (i.e., the outer level in this plot), whereas the 95% CI for Nb is given
by the 0.1465 level of the 1-dimensional profile. The point estimate is
marked by a +.

Nm appears easier to estimate to the extent that ~60% rel-
ative biases are deemed acceptable, but larger biases can
again result from mis-specification. Large biases occur even
though sampled demes exchange essentially no migrants
with demes not accounted in the statistical model. Positive
biases of Nm estimates and negative biases of g estimates
compensate each other to yield N o estimates with low rel-
ative MSE. Thus, the largest No? MSEs are obtained when
g is well estimated (i.e., for g = 0.75 in tables 6 and 7).

Figure 5 also shows that there is more information about
No” than about Nm and g separately.

Estimates of the mutation rate N are generally biased
upward, to some extent by small sample bias, but in partic-
ular when fewer subpopulations are considered in the sta-
tistical model than in simulation of the data and when the
mutation rate is low. Local diversity contains information
about the mutation rate scaled by the total population size
(Nagylaki 1983; Slatkin 1987; Strobeck 1987), so the likeli-
hood must depend on the total size of the population. How-
ever, the dependence of diversity on total size may be only
perceptible for small mutation rates. For high mutation rates
and low dispersal, the probability of identity within demes
(or a few demes apart) depends little on the total size of the
array (see, e.g., comparison of Maruyama’s (1970b) finite
lattice results to Nagylaki’s (1974) infinite lattice results in
fig. 2 of Cox and Durrett 2002), so that there may be little
statistical information to distinguish between a 40-demes
and a 1,000-demes array. This may explain why distribu-
tion of N estimates appear closer to Nn, [t than to the true
Nt value for the higher mutation rate (1072) and lower
dispersal, whereas the reverse holds for higher dispersal
and lower mutation rate (1074, table 7).

Similar trends are observed for Nm estimates but are
not always so easily understood. For high mutation (L =
1072), relatively good estimation of Nm can be achieved.
For it = 10~* and large dispersal, no migration rate appears
well estimated when deme number is mis-specified. This
does show how easily likelihood methods could be misused
in realistic conditions.

There would be considerable difficulties, both concep-
tual and statistical, in trying to estimate the number of
demes itself. Over the timescale of genealogical processes,
assuming a fixed number of demes is often no more than
a convenient device. Even in the ideal case considered in
the simulations, comparing the PAC likelihoods of the fitted
parameter values under models with different number of
demes does not point to good estimates of this number.
In the 3 cases from table 7 were the comparison was pos-
sible, the data were equally well fitted under the 60-demes
model as under the 200-demes model; the fitted PAC like-
lihoods were, if anything, slightly lower for larger number
of demes, thus pointing away from the true value of 1,000
demes.

Because any pure simulation study may miss impor-
tant factors affecting the performance of estimation, com-
parisons with demographic estimates are also important to
evaluate the possible impact of factors ignored in the sim-
ulations and eventually to force us to consider additional
factors. In the present case, the maximum PAC likelihood
estimate is ~3 times lower than the demographic estimate,
and its CI excludes this estimate. As discussed by Watts
et al. (2007), the demographic estimate reported in that
study is a worst-case overestimate for comparisons with ge-
netic estimates, in that no attempt was made to correct for
variations in population density over years. The genetic
point estimates differ in a manner consistent with the ex-
pected bias of the regression estimators under simulation
conditions fitted to the conditions of the population studied,
but more importantly the CI obtained by the regression
method overlaps widely with the one given by PAC



likelihood. Hence, one explanation consistent with all avail-
able evidence is that both genetic methods estimate, with
different small-sample biases, the same effective Do?
and that the demographic estimate was too high. Although
discrepancies between the different methods (in particular,
asymptotic bias) could still be sought, they would be of the
order of differences in confidence limits (20% for the lower
bound, 145% for the upper bound). Further comparisons
would be necessary to demonstrate systematic differences
of this magnitude.

We have assumed the same mutation rate for all loci. It
is unclear how variation in mutation rate would affect the
analyses, and estimating one mutation parameter per locus
would be both highly impractical and would increase the
MSE of the other estimates. A tentative solution to this prob-
lem could be to use a random effect model for mutation, that
is, to integrate the likelihood over a distribution of mutation
rates, of which some parameters would be estimated.

Predicting Mis-Specification Biases

Although our analysis has highlighted the biases re-
sulting from mis-specification of the number of demes,
some of these biases appear small compared with the accu-
racy sometimes expected (Whitlock and McCauley 1999)
from analyses of spatial genetic structure. How far this con-
clusion will remain true when a wider range of biological
scenarios is considered? It would be helpful to be able to
predict biases by relatively simple arguments.

In an idealized world, spatial patterns would contain
no information about mutation rates, and dispersal rates
could be estimated independently of mutation. To some ex-
tent, this is what occurs with moment methods based on
probabilities of identity of pairs of genes: local diversity
depends on the mutation rate but Fgr and related quantities
are relatively independent of mutation (Crow and Aoki
1984; Slatkin 1991), particularly at a local geographical
scale (Rousset 1996). Thus, it is to some extent possible
to estimate dispersal rate without good estimates of muta-
tion rates. The present results, as those of Beerli (2004),
suggest a similar behavior, in that mutation rate estimation
is more affected by mis-specification. However, cases
where mis-specification also notably affects estimation of
dispersal were also pointed out.

Attempts to estimate simultaneously dispersal and mu-
tation by moment methods could also result in biased esti-
mates of both parameters (an example will be presented
below). It is therefore tempting to try to predict the biases
of MLEs from the analytical theory for pairs of genes, and
the number of demes to be considered in the statistical
model might be predicted from such theory. Bias prediction
was considered by Slatkin (2005), but the approximations
of diversity by expected coalescence times he considered do
not describe well genetic identity at loci with high mutation
rates. In addition, it may not be possible to fit exactly all
probabilities of identity in a large array of demes to a model
with few parameters. Validating any prediction procedure is
bound to be complex.

Nevertheless, the simple example of the island model
can be used to support such a logic. A way of predicting
biases in the island model is to compute expected values
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of within- and among-deme probabilities of identity for
the actual number of population and to find the numerical
values of the mutation and migration rates which would
give the same probabilities of identity for the assumed num-
ber of demes in the estimation model. These computations
are straightforward (e.g., Nagylaki 1983; Rousset 2004, pp.
27, 224).

Thus, in the demographic conditions of case [51]
(nqg = 100 demes, N = 400, m = 0.01), but for an island
model of dispersal, if the mutation probability is 10~ (for
a KAM with 10 alleles) the probabilities of identity within
and among demes are 0.269 and 0.181, and the mutation
and migration probabilities which yield the same probabil-
ities in a 10-demes model are 9.1 x 10~* and 0.0083. The
predicted relative biases are therefore 8.1 and —0.17. The
observed biases were close: 8.8 and —0.20 out of 60 rep-
licate samples of 5 loci (further simulation details not
shown). The observed biases are thus well predicted and
close to those of a moment method using the information
contained in probabilities of identity. Likewise, if the mu-
tation probability is 107>, the probabilities of identity
within and among demes are 0.196 and 0.108, and the mu-
tation and migration probabilities which yield the same
probabilities in a 10-demes model are 0.0053 and
0.0048, yielding predicted relative biases 4.3 and —0.52,
respectively. The observed biases were again close: 4.04
and —0.46 out of 60 replicate samples of 5 loci.

Beyond illustrating a case where the probabilities of
identity provide good prediction of MLE biases, these ex-
amples also illustrate the simple expectation, consistent
with the other simulation results, that the relative bias on
mutation estimation will be of the order of the ny/n,, ratio
when the mutation rate is low and lower for higher mutation
rates. In the latter case, however, the bias on the migration
rate can be large and not so easily interpreted.

Therefore, a higher number of demes might need to
be considered for lower mutation rates, which could be
a serious practical problem for some types of markers.
The comparison of N biases in table 6 versus table 7 sup-
ports this idea. Local diversity is more sensitive to total
size when dispersal is less localized (higher m or g values).
So, by the same logic, a higher number of demes should be
considered when dispersal rates are higher, which is in-
deed observed in our simulations. Mis-specification ef-
fects could be important in 2-dimensional applications
and more generally when the probability of identity is
more dependent on the total size of the population than
in a linear habitat.

Finally, the variation in local diversity in KAM versus
SMMs is at most that resulting from a 2-fold variation in
mutation rate (Rousset 1996), so one could expect the mu-
tation model to have little impact on estimator performance
beyond an at most 2-fold effect on mutation rate estimation,
which is indeed what was observed when stepwise mutation
data were analyzed under a KAM statistical model.

Conclusion

The present work has shown that ML can be applied to
allelic type data from moderately large networks of popu-
lations. Maximum PAC likelihood is of potential utility for
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larger networks. Its performance was practically identical to
that of ML estimation and even superior in most cases for an
identical computation effort. The current implementation
effectively allows ML analyses of systems of n, = 10
demes in a few hours, and maximum PAC likelihood anal-
yses of larger arrays (up to 200 demes in this study) can
yield reasonably accurate estimates within a week. When
the true number of demes is unknown, the assessment of
performance yields mixed results. The number of demes
that has to be considered in the statistical model to achieve
good performance depends on the scale of dispersal and the
mutation rate, which may limit the range of realistic appli-
cations. Mis-specification biases for mutation rates are
relatively easily understood but less so for dispersal param-
eters. The composite parameter D> was relatively little af-
fected by mis-specification of the number of demes, but it
may be difficult to overcome mis-specification biases in the
estimation of other dispersal parameters.

Acknowledgments

This study was made possible by access first to the
computing facilities of the CINES (Montpellier, France),
then to a PC cluster of the University of Montpellier 2,
and finally to the ISEM cluster. We thank J.-B. Ferdy
for substantial help in using this cluster, as well as V.
Ranwez, K. Belkhir, and J. Maizi. The MNHN cluster
was also used. We thank J.-M. Cornuet for access to his
unpublished work. This is publication ISEM 07-119.

Literature Cited

Arbogast BS, Edwards SV, Wakeley J, Beerli P, Slowinski JB.
2002. Estimating divergence times from molecular data on
phylogenetic and population genetic timescales. Ann Rev
Ecol Syst. 33:707-740.

Bahlo M, Griffiths RC. 2000. Inference from gene trees in
a subdivided population. Theor Popul Biol. 57:79-95.

Barton NH, Gale KS. 1993. Genetic analysis of hybrid zones. In:
Harrison RG, editor. Hybrid zones and the evolutionary
process. Oxford: Oxford University Press. p. 13-45.

Beerli P. 2004. Effect of unsampled populations on the
estimation of population sizes and migration rates between
sampled populations. Mol Ecol. 13:827-836.

Beerli P. 2006. Comparison of Bayesian and maximum-
likelihood inference of population genetic parameters. Bio-
informatics. 22:341-345.

Beerli P, Felsenstein J. 1999. Maximum likelihood estimation of
migration rates and effective population numbers in two
populations using a coalescent approach. Genetics.
152:763-773.

Beerli P, Felsenstein J. 2001. Maximum likelihood estimation of
a migration matrix and effective population sizes in n
subpopulations by using a coalescent approach. Proc Natl
Acad Sci USA. 98:4563—4568.

Broquet T, Johnson CA, Petit E, Burel F, Fryxell JM. 2006.
Dispersal kurtosis and genetic structure in the American
marten, Martes americana. Mol Ecol. 15:1689-1697.

Cornuet JM, Beaumont MA. 2007. A note on the accuracy of
PAC-likelihood inference with microsatellite data. Theor
Popul Biol. 71:12-19.

Cox DR, Hinkley DV. 1974. Theoretical statistics. London:
Chapman & Hall.

Cox JT. 1989. Coalescing random walks and voter model con-
sensus times on the torus in Z®. Ann Probab. 17:1333-1366.

Cox JT, Durrett R. 2002. The stepping stone model: new
formulas expose old myths. Ann Appl Probab. 12:1348-1377.

Cressie NAC. 1993. Statistics for spatial data. New York: Wiley.

Crow JF, Aoki K. 1984. Group selection for a polygenic
behavioural trait: estimating the degree of population sub-
division. Proc Natl Acad Sci USA. 81:6073-6077.

de Iorio M, Griffiths RC. 2004a. Importance sampling on
coalescent histories. Adv Appl Probab. 36:417-433.

de lorio M, Griffiths RC. 2004b. Importance sampling on
coalescent histories. II. Subdivided population models. Adv
Appl Probab. 36:434-454.

de Iorio M, Griffiths RC, Leblois R, Rousset F. 2005. Stepwise
mutation likelihood computation by sequential importance
sampling in subdivided population models. Theor Popul Biol.
68:41-53.

DiCiccio TJ, Efron B. 1996. Bootstrap confidence intervals (with
discussion). Stat Sci. 11:189-228.

Ellegren H. 2000. Microsatellite mutations in the germline:
implications for evolutionary inference. Trends Genet.
16:551-558.

Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M,
Guyomard R. 1998. Comparative analysis of microsatellite
and allozyme markers: a case study investigating microgeo-
graphic differentiation in brown trout (Salmo trutta). Mol
Ecol. 7:339-353.

Fearnhead P, Donnelly P. 2001. Estimating recombination rates
from population genetic data. Genetics. 159:1299-1318.
Fenster CB, Vekemans X, Hardy OJ. 2003. Quantifying gene
flow from spatial genetic structure data in a metapopulation of
Chamaecrista  fasciculata  (Leguminosae).  Evolution.

57:995-1007.

Fields Development Team. 2006. Fields: tools for spatial data.
Boulder (CO): National Center for Atmospheric Research.
http://www.cgd.ucar.edu/software/fields.

Golub GH, van Loan CF. 1996. Matrix computations. Baltimore
(MD): John Hopkins University Press. 3rd ed.

Goudet J, Raymond M, de Meeiis T, Rousset F. 1996. Testing
differentiation in diploid  populations. Genetics.
144:1931-1938.

Gusmao L, Sanchez-Diz P, Calafell F, et al. (42 co-authors).
2005. Mutation rates at Y chromosome specific micro-
satellites. Hum Mutat. 26:520-528.

Herbots HM. 1997. The structured coalescent. In: Donnelly P,
Tavaré S, editors. Progress in population genetics and human
evolution. New York: Springer-Verlag. pp. 231-255.

Kimura M, Weiss GH. 1964. The stepping stone model of
population structure and the decrease of genetic correlation
with distance. Genetics. 49:561-576.

Leblois R, Estoup A, Rousset F. 2003. Influence of mutational
and sampling factors on the estimation of demographic
parameters in a “continuous” population under isolation by
distance. Mol Biol Evol. 20:491-502.

Leblois R, Rousset F, Estoup A. 2004. Influence of spatial and
temporal heterogeneities on the estimation of demographic
parameters in a continuous population using individual
microsatellite data. Genetics. 166:1081-1092.

Li N, Stephens M. 2003. Modeling linkage disequilibrium and
identifying recombination hotspots using single-nucleotide
polymorphism data. Genetics. 165:2213-2233. Correction:
167: 1039.

Malécot G. 1975. Heterozygosity and relationship in regularly
subdivided populations. Theor Popul Biol. 8:212-241.

Maruyama T. 1970a. Effective number of alleles in a subdivided
population. Theor Popul Biol. 1:273-306.


http://www.cgd.ucar.edu/software/fields

Maruyama T. 1970b. Stepping stone models of finite length. Adv
Appl Probab. 2:229-258.

Meng XL, Wong WH. 1996. Simulating ratios of normalizing
constants via a simple identity: a theoretical exploration. Stat
Sin. 6:831-860.

Nagylaki T. 1974. The decay of genetic variability in geo-
graphically structured populations. Proc Natl Acad Sci USA.
71:2932-2936.

Nagylaki T. 1983. The robustness of neutral models of
geographical variation. Theor Popul Biol. 24:268-294.

Notohara M. 1990. The coalescent and the genealogical process in
geographically structured population. J Math Biol. 29:59-75.

Press WH, Flannery BP, Teukolsky SA, Vetterling WT. 1988.
Numerical recipes in C. Cambridge: Cambridge University Press.

R Development Core Team. 2004. R: A language and
environment for statistical computing. Vienna, Austria. R
Foundation for Statistical Computing. [Internet]. [cited 2007
Oct 19]. http://www.r-project.org.

Raufaste N, Bonhomme F. 2000. Properties of bias and variance
of two multiallelic estimators of Fgst. Theor Popul Biol.
57:285-296.

Rousset F. 1996. Equilibrium values of measures of population
subdivision for stepwise mutation processes. Genetics.
142:1357-1362.

Rousset F. 1997. Genetic differentiation and estimation of gene
flow from F-statistics under isolation by distance. Genetics.
145:1219-1228.

Rousset F. 2000. Genetic differentiation between individuals. J
Evol Biol. 13:58-62.

Rousset F. 2004. Genetic structure and selection in subdivided
populations. Princeton (NJ): Princeton University Press.

Rousset F. 2007. Inferences from spatial population genetics. In:
Balding DJ, Bishop M, Cannings C, editors. Handbook of
statistical genetics. Chichester, UK: Wiley. pp. 945-979.

RoyChoudhury A, Stephens M. 2007. Fast and accurate
estimation of the population-scaled mutation rate, 8, from
microsatellite genotype data. Genetics. 176:1363-1366.

Sacks J, Welch WJ, Mitchell TJ, Wynn HP. 1989. Design and
analysis of computer experiments. Stat Sci. 4:409—435.

Sawyer S. 1977. Asymptotic properties of the equilibrium
probability of identity in a geographically structured pop-
ulation. Adv Appl Probab. 9:268-282.

Slatkin M. 1987. The average number of sites separating DNA
sequences drawn from a subdivided population. Theor Popul
Biol. 32:42-49.

Slatkin M. 1991. Inbreeding coefficients and coalescence times.
Genet Res. 58:167-175.

Slatkin M. 1993. Isolation by distance in equilibrium and non-
equilibrium populations. Evolution. 47:264-279.

Likelihood Inference on a Linear Habitat 2745

Slatkin M. 1994. Gene flow and population structure. In: Real
LA, editor. Ecological Genetics. Princeton (NJ): Princeton
University Press. pp. 3—17.

Slatkin M. 2005. Seeing ghosts: the effect of unsampled
populations on migration rates estimated between sampled
populations. Mol Ecol. 14:67-73.

Stephens M, Donnelly P. 2000. Inference in molecular
population genetics (with discussion). J R Stat Soc.
62:605-655.

Strobeck C. 1987. Average number of nucleotide differences in
a sample from a single subpopulation: a test for population
subdivision. Genetics. 117:149-153.

Sumner J, Estoup A, Rousset F, Moritz C. 2001. ‘Neighborhood’
size, dispersal and density estimates in the prickly forest skink
(Gnypetoscincus queenslandiae) using individual genetic and
demographic methods. Mol Ecol. 10:1917-1927.

Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD,
Smith JSC, Doebley J. 2002. Rate and pattern of mutation at
microsatellite loci in maize. Mol Biol Evol. 19:1251-1260.

Waples RS, Gaggiotti O. 2006. What is a population? An
empirical evaluation of some genetic methods for identifying
the number of gene pools and their degree of connectivity.
Mol Ecol. 15:1419-1439.

Watts PC, Rousset F, Saccheri 1J, Leblois R, Kemp SIJ,
Thompson DJ. 2007. Compatible genetic and ecological
estimates of dispersal rates in insect (Coenagrion mercuriale:
Odonata: Zygoptera) populations: analysis of ‘neighbourhood
size’ using a more precise estimator. Mol Ecol. 16:737-751.

Welch WIJ, Buck RJ, Sachs J, Wynn HP, Mitchell TJ,
Morris MD. 1992. Screening, prediction, and computer
experiments. Technometrics. 34:15-25.

Whitlock MC, McCauley DE. 1999. Indirect measures of gene
flow and migration: Fy; # 1/(4Nm + 1). Heredity. 82:
117-125.

Wilkins JF. 2004. A separation-of-timescales approach to the
coalescent in a continuous population. Genetics. 168:
2227-2244.

Winters JB, Waser PM. 2003. Gene dispersal and outbreeding in
a philopatric mammal. Mol Ecol. 12:2251-2259.

Wood JW, Smouse PE, Long JC. 1985. Sex-specific dispersal
patterns in two human populations of highland New Guinea.
Am Nat. 125:747-768.

Zihle I, Cox JT, Durrett R. 2005. The stepping stone model, II:
genealogies and the infinite sites model. Ann Appl Probab.
15:671-699.

Marcy Uyenoyama, Associate Editor

Accepted September 18, 2007


http://www.r-project.org

