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Abstract

The joint analysis of spatial and genetic data is rapidly becoming the norm in population

genetics. More and more studies explicitly describe and quantify the spatial organization

of genetic variation and try to relate it to underlying ecological processes. As it has

become increasingly difficult to keep abreast with the latest methodological develop-

ments, we review the statistical toolbox available to analyse population genetic data in a

spatially explicit framework. We mostly focus on statistical concepts but also discuss

practical aspects of the analytical methods, highlighting not only the potential of various

approaches but also methodological pitfalls.
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Introduction

As many ecological and evolutionary processes that

influence genetic variation are mediated by space, the

joint analysis of genetic and spatial information can

lead to a better understanding of these processes. While

this was acknowledged as early as the 1940s in the the-

oretical work of Dobzhansky & Wright (1941), Wright

(1943) and Malécot (1948), the traditional population

genetic studies were limited in spatial inference to tests

of the effect of geographic distance. More recent meth-

ods allow testing for the influence of environmental fea-

tures on gene flow and genetic structure. There is,

however, no spatial genetic theory as yet, but rather a

set of concepts and broad variety of methods that are

combined in a rather ad hoc manner in different studies.

Furthermore, spatial genetics has become such a rapidly

evolving field that it is becoming increasingly difficult

to keep abreast with the latest statistical developments.

In the present work, our aim was to review the statis-

tical toolbox available to molecular ecologists aiming to

detect, quantify and test the spatial structure of genetic

variation. We mostly focus on statistical concepts but
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also discuss practical aspects of the analytical methods,

highlighting both the potential and the pitfalls associ-

ated with analysing population genetic data in a

spatially explicit framework. We introduce general

methods for exploratory data analysis and present and

discuss models of isolation by distance (IBD) as well as

spatial clustering models. Throughout, we hope to show

that, instead of trying to get rid of a spatial pattern, it is

often fruitful to model it. By doing so, one can hope to

make more accurate inferences by appropriately inject-

ing a priori information and obtaining directly interpret-

able parameters. While we will try to emphasize that

no approach can give definitive answers, we finish by

discussing how information about genetic patterns can

be used to gain a deeper insight into the underlying

ecological and evolutionary mechanisms.

The subject of this review partially overlaps with

landscape genetics, the branch of population genetics

concerned with the effect of landscape features on

genetic structure. Readers interested in this subject may

refer to earlier reviews by Manel et al. (2003), Holdreg-

ger & Wagner (2006), Storfer et al. (2007) and Møller-

Hansen & Hemmer-Hansen (2007). As spatial genetic

studies have mostly been concerned with the study of

neutral genetic variations, we chose to focus our review

on the methodologies suitable for this type of analysis
� 2009 Blackwell Publishing Ltd
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and do not address the problems linked to the spatial

structure of genetic markers under selection. A list of

relevant computer programs can be found in the Sup-

porting Information (Table S1) and we refer readers fur-

ther interested in this aspect to a recent review by

Excoffier & Heckel (2006).
Exploratory data analysis

We start by focusing on methods that are essentially

descriptive as they do not make explicit assumptions

about past and on-going biological processes or even

about spatial patterns that may influence genetic varia-

tion. As will be shown later, more formal assumptions

on evolutionary or ecological processes should, in prin-

ciple, increase the power of inference and ease of inter-

pretation of the identified patterns.

Traditionally, the statistical units of analysis in a pop-

ulation genetic study have been groups of individuals

or populations (Waples & Gaggiotti 2006). The explor-

atory methods were mostly designed with predefined

populations in mind. However, for many species, popu-

lation density can be continuous, with allele frequencies

displaying smooth variation across space. In this con-

text, predefined populations may make little sense. The

more formal statistical approaches can either be applied

to both types of data or they were specifically designed

to focus on individual variation, which, again, can make

their use more appropriate in spatial genetics.
Global statistics

Investigating dependence between geographic and genetic

distances. There is a broad variety of methods to detect,

quantify and test the spatial structure of genetic varia-

tion. Before implementing any of these, it can be useful

to carry out a preliminary analysis to test for a statisti-

cal dependence between geographic and genetic dis-

tances (pairs consisting of individuals or a priori defined

groups). This is usually carried out using a Mantel test,

a permutational procedure used to test the statistical

significance of matrix correlations (Sokal & Rohlf 1995,

pp. 813–819). It returns a P-value for the empirical cor-

relation coefficient between the geographic and the

genetic distance matrices, with a significant correlation

being indicative of spatial structure.

There can be uncertainty about the underlying causes

of this statistical dependence. A significant P-value

could be due, for example, to IBD (see section below)

or to the presence of barriers to gene flow between pop-

ulations that are otherwise globally panmictic. These

two circumstances are of a very different nature. While

the former reflects the intrinsic dispersal ability of the

species, the latter results from landscape features
� 2009 Blackwell Publishing Ltd
reducing gene flow. Different combinations of these two

effects with different spatial patterns can lead to similar

P-values. Plotting pairwise geographic vs. genetic dis-

tances may give clues about the relative importance of

these two factors (see Fig. 1 for a synthetic example

and Box 2 for an example of combined effects of IBD

and landscape features).

From Mantel test to empirical spatial autocorrelation

analysis. The variation of genetic distance as a function

of geographic distance can be analysed by the empirical

spatial autocorrelation function, an exploratory tool

widely used in geostatistics and environmental statis-

tics. This function is defined for a sample (x1, …, xn) of

a single quantitative variable x as

cðhÞ ¼
1=nh

P
Ch

ðxi � �xÞðxj � �xÞ

1=n
P

i

ðxi � �xÞ2
ðeqn 1Þ

where Ch denotes the set of pairs of individuals sepa-

rated by a distance of approximately h, nh denotes the

number of such pairs and n denotes the number of

individuals. In practice, as it is more robust to sam-

pling variance, the empirical variogram function

defined as

cðhÞ ¼ 1

2nh

X

Ch

ðxi � xjÞ2 ðeqn 2Þ

is often preferred. To deal with genotypic data, which

are most often treated as categorical variables, one can

either work with allele frequencies obtained by averag-

ing over individuals taken at (or around) a sampling

site or work with an indicator variable for each allele

(taking the value 0, 1 or 2 depending on the number of

copies of this allele carried by the individual). The latter

leads to Moran’s I statistic, a widely used descriptor of

spatial genetic structure. Its use for inference of dis-

persal characteristics will be discussed in the sequel

(see also Hardy & Vekemans 1999; Rousset & Leblois

2007).

The functions defined above are widely used in envi-

ronmental statistics because they bring insights into the

spatial scale of variation of the process, in particular the

characteristic distance at which statistical dependence

disappears (this distance being known as the range in

geostatistics) and also its direction of maximal rate of

decrease. This method produces an out-of-sample pre-

diction of the variable at hand (e.g. allele or haplotype

frequency) and therefore a map of the variable on the

whole study domain from a limited sample. Attempts

to relate geostatistics to classical population genetics

models (in particular mutational and dispersal models)

can be found in Wagner et al. (2005) and Hardy &
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Fig. 1 Artificial examples of patterns of

allele frequencies at a single locus

across space in a one-dimensional habi-

tat (a,c) and plots of the relationship

between geographic and genetic dis-

tance as tested by a Mantel test (b,d).

Panels (a,b): three panmictic popula-

tions separated by barriers that allow

restricted gene flow between adjacent

populations; at the scale considered, the

intrinsic dispersal process is not affected

by distances but mostly by the presence

of barriers and the mutual locations of

patches; panels (c,d) correspond to a

genuine continuous population under

isolation by distance. In both cases, a

Mantel test would reject the hypothesis

of global panmixia, although the ecolog-

ical processes are of different natures.
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Vekemans (1999) and examples of application can be

found, e.g. in Monestiez et al. (1994), Le Corre et al.

(1998) and Thompson et al. (2005).

It must be emphasized, however, that the interpreta-

tion of the parameters inferred from the variogram, and

especially of its range in terms of dispersal distances,

must be done with caution, in particular because vario-

gram features might depend on the mutation process

and can also be affected by the sampling scheme (see

also conclusion on this point).
Statistical methods to quantify spatial genetic
variations locally

The correlation coefficient between geographic and

genetic distances, or the parameters of the variogram,

are global statistics in the sense that their computation

involves all the data points and that they reflect global

properties of the sample over the whole study area.

They make sense when the study area is homogeneous

(e.g. in terms of landscape features and gene flow pat-

terns). It is possible to get further insights into the

details of genetic variation by computing statistics
locally. This is the aim of methods collectively referred

to as barrier detection methods.

While clustering methods (described in section

below) look for homogeneous spatial domains, barrier

detection methods try to identify areas of abrupt

genetic discontinuities. As such, they complement

clustering methods, as they can identify features that

disrupt gene flow locally, along U-shaped patterns,

for example, without creating distinct genetic units

(see Fig. 2 for a synthetic illustration and Irwin et al.

2001; Joseph et al. 2008 for the related issue of ring

species).

Wombling methods. In its initial formulation (Womble

1951; Barbujani et al. 1989), the Wombling method pro-

duced a map of the norm of the gradient of allele fre-

quencies (an index quantifying the local variability of

allele frequencies), highlighting areas of abrupt changes

in allele frequencies. Its main drawback is that it does

not provide a frame of reference to assess the relative

importance of the observed break. The recent extensions

that attempt to reformulate the method in a more rigor-

ous statistical framework (Bocquet-Appel & Bacro 1994;
� 2009 Blackwell Publishing Ltd
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Fig. 2 Schematic example of a physical obstacle (dashed area)

that limits gene flow (e.g. mountain, urban area) but does not

split the study area into nonconnected pieces. Letters A–D rep-

resent individuals. Gene flow is not possible through the obsta-

cle but along the obstacle. Despite the presence of an obstacle,

there is no reason to expect clusters. However, in case of weak

isolation by distance, one might expect some differentiation

between individuals located in distant areas on opposite sides

of the barrier (C and D, as opposed to A and B, which are

close to each other and not separated by the barrier) and there-

fore some kind of spatial genetic discontinuities.
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Cercueil et al. 2007; Crida & Manel 2007; Manel et al.

2007) still rely strongly on user-specified parameters.

The accuracy of these extensions also needs to be

assessed with simulated data. More formal statistical

methods implemented in a nongenetic context could be

easily extended to genetic data (Banerjee & Gelfand

2006; Liang et al. 2008).

Monmonier’s algorithm. Monmonier’s (1973) algorithm is

a related approach that tries to identify pairs of neigh-

bouring predefined population units that display rela-

tively large genetic differentiation. It employs an ad

hoc strategy that does not follow a clear statistical or

biological rationale. We stress that, although the

method has been widely used, the accuracy and the

influence of the choice of some important parameters

have rarely been assessed in a controlled setting, i.e.

with simulated data. One exception is a study by Du-

panloup et al. (2002), which clearly showed that popu-

lations need to be fairly strongly differentiated for the

algorithm to correctly infer the location of genetic dis-

continuities (although accuracy improved when the

number of loci was increased). Furthermore, it has

been suggested that the output of the method depends

on the geographical sampling design (Rollins et al.

2006). Importantly, it requires a priori definition of the

number of genetic groups believed to be present in a

data set; a piece of information that frequently is not

available.
� 2009 Blackwell Publishing Ltd
Ordination methods

Ordination methods are exploratory methods aimed at

finding proximities between high-dimensional objects

by summarizing information in low-dimensional space.

The most popular of those methods is the principal

components analysis (PCA). The method aims to sum-

marize information contained in p possibly correlated

variables by creating p synthetic uncorrelated variables

that can be ordered by decreasing information content

(see Jombart et al. (2009) for a recent review). It is usu-

ally expected that most of the information can be cap-

tured by a small number of these new variables. PCA

can be applied to allele frequencies computed from a

priori defined populations or to individual genotypes.

Patterson et al. (2006) showed recently that PCA can be

successfully used to detect population structure in par-

ticular large data sets consisting of thousands of SNPs

where implementing a more complex method (e.g.

Bayesian clustering discussed in Clustering methods

section below) becomes impractical. Hannelius et al.

(2008), Lao et al. (2008) and Novembre et al. (2008) also

showed that the inferred genetic structure might reflect

geographic features (pairwise geographic distances of

the samples). The efficiency of these methods is depen-

dent, however, on the ability of users to interpret the

synthetic variables and a small number of those syn-

thetic variables might fail to capture enough informa-

tion. Note also that Reich et al. (2008) and Novembre &

Stephens (2008) discussed how certain spatial patterns

of PCA maps can result from IBD gradients and

pointed out the need for great care in interpreting the

inferred patterns in terms of past migration/coloniza-

tion processes.
Isolation by distance

Overview

Natural populations are often nonrandom mating units

because reproduction occurs preferentially between geo-

graphically close individuals and because inter-genera-

tional individual dispersal distances are usually small

compared with the area delimiting the population: a

phenomenon that leads to IBD. IBD models have often

been used in empirical studies to quantify dispersal

from genetic data, in particular as an alternative to

demographic data that can be difficult and time con-

suming to collect. The aim of these analyses was to

investigate aspects of reproductive, demographic and

migratory functioning of populations. Questions of par-

ticular interest include the study of local adaptation

(Petit et al. 2001; Prugnolle et al. 2005; Loiseau et al.

2009), the quantification of dispersal ability for the
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design of conservation area or for the management of

pest species (Olsen et al. 2003; Gonzales-Suarez et al.

2009). It has also recently been highlighted that IBD can

be a confounding factor in population genetic analyses

based on some panmictic populations, as illustrated by

Leblois et al. (2006) for the detection of population size

variations and discussed in the Clustering methods sec-

tion for the detection of genetic discontinuities.

Although methods to detect and quantify the effect of

IBD are ubiquitous in molecular ecology studies, the

precise assumptions they rely on are often not well

understood. This relates presumably to the fact that the

literature on the subject spans a long period of time

and can be of a quite theoretic nature. For this reason,

before discussing practical methods, we try to give a

short but hopefully self-contained overview of the theo-

retic aspect of IBD models.
Population genetics models

Historical perspective: Wright’s original isolation by distance

model and Kimura’s stepping stone model. Wright (1943)

considered initially a model in which individuals are

distributed randomly and uniformly over space and

where mating occurs between neighbouring individuals

(separated by a small distance). Later, Wright (1946)

extended his model to allow dispersal according to a

Gaussian distribution. In a fashion analogous to

Wright–Fisher island models where differentiation is

governed by the product of population sizes and migra-

tion rate, the central parameter of interest in this model

is the neighbourhood size defined (up to a factor 2p) as

Dr2, where D is the density of genes (or haploid indi-

viduals) and r2 the mean-squared dispersal distance

(the noncentred second-order moment of the dispersion

function) of the Gaussian distribution. Wright showed

that, under such models, individuals living nearby tend

to be genetically more similar than those living further

apart and that the increase in genetic differentiation

with geographic distance strongly depends on the

neighbourhood size.

Besides these continuous models, Kimura (1953) pro-

posed a model known as ‘stepping stone’, where popu-

lations or demes (and not individuals) are located at the

nodes of a grid and dispersal occurs mainly between

adjacent subpopulations at rate m but where long-range

dispersal between distant populations also occasionally

occurs independently of the distance at rate m¥. Kimura

& Weiss (1964) showed that under localized dispersal

(i.e. m¥ > m > 1), genetic differentiation increases with

geographic distance and that this increase depends on

the product of deme size N and the local dispersal rate

m. As long-range dispersal events can be viewed (for the

purpose of reasoning) as mutations (introducing an
unrelated allele in the host population), the neighbour-

hood size Dr2 in a stepping-stone model is equal to Nm.

More general dispersal models. Data on dispersal distribu-

tions in natural populations suggest that dispersal is of

limited spatial magnitude mostly with occurrence of

rare long-distance dispersal events (leptokurtic distribu-

tions) (Bateman 1950; Portnoy & Wilson 1993; Clark

et al. 1999; see also Endler 1977; Rousset 2004 for

reviews). However, the particular shapes of dispersal

distributions are expected to be highly diverse. General

methods that would not rely on specific dispersal distri-

butions, such as the normal distribution or a ‘stepping

stone’ dispersion, are therefore expected to be more

robust than others when applied to real data sets. Most

of the recent IBD analyses are based on the so-called

infinite lattice model. This model considers populations

or individuals distributed on a lattice with spatially

homogeneous demographic parameters, i.e. homoge-

neous population sizes or density and dispersal and

was first formulated by Malécot (1950). This model is

compatible with any arbitrary dispersal distribution

with finite first-, second- and third-order moments. The

Wright–Fisher island model and the stepping stone

model are particular cases of this model that consider

dispersal to be uniform or restricted to adjacent popula-

tions respectively.

Malécot (1975), Nagylaki (1976) and Rousset (1997)

computed probabilities of gene identity as functions of

demographic and mutational parameters of the lattice

model for general forms of dispersal distributions.

Those aspects are reviewed by Nagylaki (1989) and

Rousset (2004). In these analyses, the effective density

on the lattice and the second moment of the axial dis-

persal distance distribution (or the mean-squared par-

ent–offspring dispersal distance) r2, are of particular

importance. Note that r2 is not, as too often considered,

the variance of the dispersal distribution, but a more

useful interpretation is that r2 is a measure of the speed

at which two lineages derived from a common ancestor

move away from each other generation by generation

(Rousset 2004). Dr2 can thus be viewed as a simple

measure of spatial genetic structure. Under an island

model and a stepping stone model, r2 equals +¥ and m

respectively. Let us define ar as
ar ¼ ðQ0 �QrÞ=ð1�Q0Þ; ðeqn 3Þ

where Qr is the probability of identity by descent

between two genes separated by a geographic distance

r (r ‡ 0). The main result of the lattice model analysis is

the linear relationship between ar and the geographic

distance in one dimension or its logarithm in two

dimension:
� 2009 Blackwell Publishing Ltd



Box 1: Using isolation-by-distance patterns to perform spatially continuous assignment

Random genetic drift under IBD tends to produce smooth spatial variations of allele frequencies. Inferred maps of

allele frequencies can be used to perform geographically explicit individual assignments. Wasser et al. (2004) and

Wasser et al. (2007) developed a method that jointly estimates such maps and estimates the unknown geographic

origin of a DNA sample by comparing its alleles with estimated allele frequencies. Rather than simply assigning

individuals to predefined populations, the method can, in principle, assign individuals to any spatial location

whose inferred allele frequencies best explains the genotype of the sample. Using this method, Wasser et al. (2007)

showed that a large shipment of contraband ivory originated from a narrow region centred on Zambia. The accu-

racy of the assignment depends on the accuracy of the allele frequency map implicitly generated during the infer-

ence step, which in turn depends on the size of the training data set and on how much allele frequencies

characterize a given region.

Pope et al. (2007) found that the individual spatial assignments generated by the method proposed by Wasser

et al. (2004) could give ambiguous results (many possible locations). This might result from: (i) a lack of differenti-

ation in the data; (ii) uncertainty about allele frequencies due in particular to the use of data with individuals con-

tinuously sampled over space; (iii) departure of data from the underlying statistical model; (iv)

overparametrization compared with sample size; (v) MCMC convergence flaw. Pope et al. (2007) devised a simpler

method based on the same rationale. They used their method to compare the movement of individual badgers

before and after a culling operation performed in the context of bovine tuberculosis (Mycobacterium bovis) control.

Even though they showed that the badgers moved, on average, further post- than pre-cull, it yet remains to be

seen how accurate Pope et al.’s method is in the assignment of individuals to specific geographic localities.

In a study in human genetics, modelling allele frequencies as a linear function of spatial coordinates as the syn-

optic scale, Amos & Manica (2006) were capable of assigning individuals with an accuracy of 1200 miles. Novem-

bre & Stephens (2008) proposed a method based on a PCA suitable for large SNPs data that predict spatial origin

through a linear regression on the first two principal components.

(a) (b)

(a) Map of Africa showing the collection sites divided into five regions: West Africa (cyan), Central forest (red), and

Central (black), South (green) and East (blue) savanna. (b) Estimated locations of elephant tissue and faecal samples

from across Africa when assignments are allowed to vary anywhere within the elephants’ range. All tissue and scat

samples (n ¼ 399) were successfully amplified at seven or more loci. Sampling locations are indicated by a cross and

are colour coded according to actual broad geographic region of origin: West Africa, Central forest, and Central,

South and East savanna [colour coded as in (a)]. Assigned location of each individual sample is shown by a circle and

is colour coded according to its actual region of origin. The closer each circle is to crosses of the same colour, the more

accurate is that individual’s assignment (figures and caption reprinted from Wasser et al. 2004).
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ar �
r

2Dr2
þ A1 in one dimension ðeqn 4Þ

and

ar �
ln r

2pDr2
þ A2 in two dimensions, ðeqn 5Þ

where D is the effective density of genes over the sam-

pled area, r2 the mean-squared parent–offspring dis-

tance, and A1 and A2 are constant terms that depend

on the shape of the dispersal distribution, but not on

population sizes or mutation rates (see Rousset 1997,

2004 for details on these terms). Note that these equa-

tions relate the slope of the regression between ar and

the geographic distance to the neighbourhood size in a

straightforward manner.

Neglecting A1 and A2 leads to inaccurate approxima-

tions of F-statistics in terms of the model parameters. It

also explains why it is often considered that the neigh-

bourhood size Dr2 solely determines the whole genetic

patterns under IBD. It must be emphasized that the

above linear relationship is based on approximations

that are only valid for simultaneously large r and small

rl, where l is the mutation rate, an important con-

straint that is often forgotten (Rousset 1997). In practice,

the linear relationship will be reasonably accurate for

intermediate geographic distance with r � r �
0:2r=

ffiffiffiffiffiffi
2l
p

in one dimension and r � r � 0:56r=
ffiffiffiffiffiffi
2l
p

in

two dimensions (Rousset 1997, 2004). At a shorter dis-

tance, the shape of the dispersal distribution will have a

strong influence on the increase in differentiation with

geographic distance and at larger scales, mutation rate

will break the linear relationship (Leblois et al. 2003;

Rousset 2004).

From discrete to continuous populations. As advocated in

the work of Wright (1943) mentioned earlier, there are

not necessarily discrete subpopulations or demes (i.e.

geographically localized panmictic units) in natural

populations and individuals can often be continuously

distributed over space. The absence of demic structure

can be achieved in a lattice model by assuming subpop-

ulation sizes equal to one. This case can be viewed as

an approximation for continuous populations when

density regulation (e.g. by competition) is strong

enough to keep a constant local density (Felsenstein

1975; Malécot 1975; Slatkin 1989; Rousset 2000). It

would be even more realistic to assume that individuals

could settle at any location in space. This would induce

spatial and temporal density heterogeneities. Such mod-

els with continuous distribution of individuals have

been formulated (Wright 1943, 1946; Malécot 1967; Nag-

ylaki 1974; Barton et al. 2002); however, they did not
rely on a well-defined set of biological assumptions and

led to incoherent results (Maruyama 1972; Felsenstein

1975). A recent study by Robledo-Arnuncio and Rousset

(2009) solved some of those problems in a continuous

model of IBD with demographic fluctuations and

allowed robust definitions of effective dispersal and

density parameters in terms of demographic parame-

ters. Their results showed that the expected linear rela-

tionship between ar and geographic distance holds for

continuous IBD models with fluctuating density. They

also showed that, similar to the case of a lattice model

with one individual per node, the slope is given by the

effective Der2
e parameter.
Inference methods under isolation by distance using
genetic distances

Inference of demographic parameters under isolation by

distance. Slatkin (1993) developed the first method that

took demographic parameters explicitly into account

when analysing genetic data under IBD. The method is

based on a plot of estimates of M defined as (1/

FST ) 1)/2 against geographical distance on a log–log

scale. An estimate of the number of migrants per gener-

ation Nm is given by the intercept of this regression.

Using M instead of other genetic distances has two main

interests : (i) M is roughly independent of mutation

rates and sample design; (ii) the value of M computed

for a pair of samples distant of d is related to Nm

through the simple formula M � Nm/d under a step-

ping stone model (Slatkin 1991, 1993). These features

allow easy comparison between different samples.

This method allows quantitative inferences of dis-

persal under stepping stone models but not under more

general IBD models because the simple relation

between M and the number of migrants does not hold

any longer. The most general inference method is

derived from the linear relationship between ar and the

geographic distance with a slope solely determined by

the product Dr2 at a local geographical scale. Rousset

(1997, 2000) proposed to use the inverse of the regres-

sion slope between estimates of ar computed from

genetic data collected at a local scale and the geo-

graphic distance in one dimension, or its logarithm in

two dimensions, to estimate Dr2.

Connections between empirical autocorrelation functions and

theoretical isolation-by-distance models. Connections

between empirical autocorrelation methods and theoret-

ical IBD models have been investigated by numerical

simulations with the aim of quantifying IBD (e.g. Sokal

& Wartenberg 1983; Epperson 1995; Epperson & Li

1997). Many empirical studies, especially on plant

populations, have used this approach (reviewed by
� 2009 Blackwell Publishing Ltd
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Heywood 1991; Epperson 1993) but most of them only

describe patterns in a qualitative way, making compari-

son among studies difficult. Epperson (1995, 2005, 2007)

developed quantitative inference methods based on

numerical simulations. However, as detailed by Rousset

(2008), such methods are not fully adequate because: (i)

they are based on numerical simulations considering

that the neighbourhood size, Dr2, is the only dispersal

parameter that shapes spatial genetic structure, whereas

the above IBD analyses show that differentiation under

IBD is not only a function of Dr2 but also depends on

mutation processes as well as complex features of the

dispersal distribution; and (ii) they use genetic statistics

that are not independent of sampling scheme and muta-

tion rates, introducing complications for comparison

among studies.

There are many reasons, however, to consider other

differentiation statistics (e.g. different from ar) for infer-

ences under IBD. In any case, to allow appropriate anal-

yses and especially robust inference, the relationship

between the statistic used and the demographic param-

eters of the model should be well defined; and the latter

relationship should be to some extent robust to muta-

tion processes and sampling design. Examples of differ-

ent statistics design and tests can be found in Hardy &

Vekemans (1999) and Hardy (2003) for plant popula-

tions and dominant markers, as well as in Watts et al.

(2007) for an improvement of Rousset’s method for

populations with large Dr2 values (i.e. weak IBD pat-

tern). One can also choose to use biased statistics with

small variance to test for IBD with more power and

then use unbiased statistics to make demographic infer-

ences. Detailed discussion on the different statistics to

use and on the relationship between spatial autocorrela-

tion analyses, population genetic models and the neigh-

bourhood size can be found in Hardy & Vekemans

(1999), Vekemans & Hardy (2004) and Rousset (2008).
Maximum likelihood inference of demographic
parameters under isolation by distance

Likelihood methods are theoretically more powerful

than methods based on summary statistics because they

use the whole information present in the data. The

migration matrix model, with one migration rate

parameter for each population pair, as implemented in

the MIGRATE program (Beerli & Felsenstein 2001), theoret-

ically allows inference under IBD. However, as pointed

out by Beerli (2006), it will be practically inaccurate as

it appears difficult to make inference under a model

with more than four subpopulations because of the high

number of parameters in the migration matrix model.

There has been one attempt to use MIGRATE with IBD

data but analyses of both real and simulated data
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overestimated dispersal (i.e. r2 one order of magnitude

higher than the expected value), whereas the regression

method described above gave results close to expecta-

tions (Leblois 2004).

More recently, a likelihood-based method specifically

developed to infer demographic parameters under a

one-dimensional IBD model gave interesting insights on

the behaviour of such likelihood-based methods (Rous-

set & Leblois 2007). As expected, difficulties arise from

the inherent dependency of the likelihood on all param-

eters of the model, especially nuisance parameters and

those for which information on genetic data is limited.

Simulation tests showed that: (i) likelihood-based infer-

ences of Dr2 are slightly more precise than inferences

with the regression method when all assumptions of

the likelihood model are verified; but also (ii) other

parameters (e.g. shape of the dispersal distribution,

total number of subpopulations and mutation rates as

well as population sizes and migration rates inferred

separately) cannot be inferred with good precision from

classical genetic samples (i.e. single time sampling of

independent genotypic markers). Finally, maximum

likelihood inferences from data sets simulated under a

model different from the model of analyses always lead

to less robust results than those obtained with the

regression method (Rousset & Leblois 2007).
Testing for isolation by distance on real data sets

As already mentioned, the presence of an IBD pattern

(i.e. positive correlation between genetic and geographic

distances, corresponding to finite Dr2) is usually

inferred using Mantel tests (Mantel 1967). However,

there is often low power to detect IBD with a Mantel

test using typical sample size (e.g. hundred individuals

sampled at the adequate geographical scale so as to

avoid biases discussed by Leblois et al. (2003) because

estimates of the differentiation statistics have high vari-

ance and Dr2 often show large values in natural popu-

lations, both factors leading to weak correlation

between genetic and geographic distances. Note also

that IBD could theoretically be detected by testing for

HW disequilibrium (evidence from simulated data are

reported, e.g. by Frantz et al. (2009). However, the

power of such tests has not been investigated yet and

some empirical data sets suggest that Hardy–Weinberg

equilibrium (HWE) will often not be rejected even in

the presence of strong IBD (Sumner et al. 2001; Winters

& Waser 2003; Broquet et al. 2006; Watts et al. 2007).

It would be useful to provide confidence intervals for

a measure of IBD that can be related to dispersal and

density parameters, such as Dr2. Along this line, Leb-

lois et al. (2003) used ABC bootstrap (DiCiccio & Efron

1996) to compute confidence intervals on the slope of
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Fig. 3 Artificial examples of spatial patterns for some putative panmictic clusters. (a) Complete spatial randomness; (b) pattern typi-

cal of a continuously populated species with clusters separated by spatially simple shaped boundaries; (c) pattern typical of a species

with large variations of population density across space (e.g. due to habitat fragmentation). The colour symbol indicates cluster mem-

berships of individuals.
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the linear relationship between ar and geographic dis-

tance, but they show that the intervals computed with

this procedure are always too narrow due to an overes-

timated lower bound. Finally, maximum likelihood

should allow model test between IBD and Wright–

Fisher models but this, to our knowledge, has never

been done.
Summary and conclusion on isolation by distance

When working on data from natural populations, many

factors are uncontrolled and inferences are based on

highly simplified models. One major concern is thus the

robustness of the analyses based on a given model

when some assumptions do not hold because it deter-

mines what can be estimated. As an example, the

regression method of Rousset (1997, 2000) has been

thoroughly tested using simulated data sets with regard

to mutational and sampling factors (Leblois et al. 2003)

and with regard to demographic fluctuations in space

and time (Leblois et al. 2004). All those tests showed

that inference of Dr2 using this method is robust to

mutational processes and that, in numerous realistic

conditions, the method estimates the local and actual

demographic parameters with good precision (e.g.

within a factor of two). Moreover, comparison between

independent demographic and genetic estimates of Dr2

on the same populations showed reasonable agreement

(i.e. within a factor of two), on 10 different data sets

(Rousset 1997, 2000; Sumner et al. 2001; Fenster et al.

2003; Winters & Waser 2003; Broquet et al. 2006; Watts

et al. 2007). These results go against the belief in popu-

lation genetics (Lewontin 1974; Slatkin 1987; Whitlock &

McCauley 1999) that observed genetic structure is often

not consistent with expectations from theoretical
population genetic models and that inference from

genetic data thus cannot give accurate estimates of

demographic parameters in natural populations. Fur-

thermore, all those results suggest that the lattice model

predicts rather well the local increase in differentiation

with distance for natural populations with limited dis-

persal and that the regression method is fairly robust to

various demographic and mutational factors when

adequately used.

For ecologists, one relevant caveat of the above anal-

yses is that there is no method to infer dispersal

parameters other than Dr2 from genetic data under

IBD using F-statistics or similar analyses such as auto-

correlation analyses. Other dispersal parameters that

could be of great interest are, for example, maximal

dispersal distance, long dispersal rates or more gener-

ally a finer characterization of the dispersal distribution

independently of the density parameter. The important

question is then whether genetic data per se contain

enough information to infer more detailed features of

dispersal. Some recent likelihood analyses suggest that

there is some information in typical genotypic samples

but not enough to allow precise estimations of the

shape of dispersal, total population size or to separate

density from dispersal parameter estimates (Rousset &

Leblois 2007).
Clustering methods

Nonspatial vs. spatial models

An important body of work has been concerned with

variations of allele frequencies due to random drift

induced by lack of gene flow. This problem has been

investigated prominently by the use of Bayesian cluster-
� 2009 Blackwell Publishing Ltd
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Fig. 4 Examples of simulated spatial pattern for cluster membership as modelled by a free Voronoi tessellation: (a) locations of indi-

viduals here assumed to be regularly sampled over space; (b) some artificial auxiliary points (often referred to as nuclei) are intro-

duced to represent the locations of some polygons approximating the domain of the sought-after clusters. Note that the number and

location of nuclei do not coincide with those of the sampling sites. Each nucleus defines a polygon (consisting of all points in the

spatial domain closer to this nucleus than to any other nucleus) and these polygons define collectively a tessellation of the spatial

domain known as Voronoi tessellation; (c) making inference about the domain of the cluster amounts to infer the location of the

nuclei and the cluster membership of the polygons (often referred to as colour in stochastic geometry and represented as such here).

Bottom row: (d–f) similar to (a–c) for some individuals irregularly sampled over the spatial domain. Note that the tessellation relies

on the auxiliary points only and the location of the sampled individuals does not play any role. This is the core of the model under-

lying the spatial algorithm in GENELAND.
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ing models that try to infer populations or clusters of

individuals that fit some genetic criteria that define

them as distinct groups. The detailed assumptions

underlying these models vary, but the simplest versions

assume that: (i) each individual’s genome has its origin

in a single cluster (no-admixture); (ii) the genotypic pro-

portions in each sought-after cluster are at HWE, with

loci at linkage equilibrium (HWLE); and (iii) a mini-

mum of between-cluster genetic differentiation is pres-

ent (cluster-specific allele frequencies). This scenario

corresponds to the situation where the data set at hand

consists of a few well-differentiated panmictic clusters

and is the model underlying the no-admixture option of

the STRUCTURE program pioneered by Pritchard et al.

(2000). While this earlier version of the program also

included an option to account for hybrid individuals
� 2009 Blackwell Publishing Ltd
(admixture options), subsequent developments include

a model to deal with allele frequencies displaying corre-

lation between clusters, a model to deal with linked loci

(Falush et al. 2003) and a scheme to account for domi-

nant markers (Falush et al. 2007).

Clustering individuals from genotypes is a task that

strictly speaking does not require the use of any spatial

information. The models mentioned above only make

use of the genetic information at hand. They make the

implicit assumption that individual cluster membership

does not display any particular spatial pattern, a sce-

nario corresponding to the very specific situation where

the putative factor limiting gene flow would be com-

pletely spatially unstructured. Such a pattern could be,

for instance, due to assortative mating or some other

kind of behavioural barrier, or to specialization to dif-
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ferent types of sympatric hosts in the case of parasite

species (see, e.g. Martel et al. 2003 about host plant-

mediated sympatric speciation). Except in those very

particular cases, complete spatial randomness is not

realistic. Some artificial examples of putative spatial

patterns are given in Fig. 3 where a pattern of complete

spatial randomness is shown in the left panel. Impor-

tantly, a model making no particular assumption about

spatial patterns would consider all three patterns as a

priori equally likely. Two types of alternative models

are described in the next sections.
Spatial model of cluster membership based on a tiling
of the continuous spatial domain

Motivations. The presence of physical barriers to dis-

persal is an important factor that limits gene flow. For

example, Rieseberg et al. (2009) report that about one-

half of the studies published in Molecular Ecology

related genetic population structure to the presence of

a barrier. There can be physical barriers of human ori-

gin such as roads (Coulon et al. 2006; Riley et al. 2006;

see also Gauffre et al. 2008 on this question), urban

areas and areas of human activity (for species living in

a linear habitat (see, e.g. Monaghan et al. 2001; Ya-

mamoto et al. 2005 for the effect of dams on fresh

water fishes; see also Su et al. 2003 for the effect of

the Great Wall of China on certain plant species). Bar-

riers of natural origin have also been widely reported.

They include, for example, climate conditions (Stenseth

et al. 2004; Pilot et al. 2006), oceanographic features

(Fontaine et al. 2007; Galarza et al. 2009), vegetation

cover (Sacks et al. 2008) and waterways (Coulon et al.

2006).

Model. Generally, while the exact location of dispersal

barriers is unknown, it is reasonable to expect that

they have a simple spatial shape. At least, this was

the rationale for the development of the model under-

lying the GENELAND program (Guillot et al. 2005a,b,

2008; Guillot 2008). The central assumption of this

model is that the spatial domain occupied by the

inferred clusters can be approximated by a small num-

ber of polygons. While this approach can be formal-

ized in various ways (see Stoyan et al. 1995;

Lantuéjoul 2002; Møller & Stoyan 2009 for overviews),

in GENELAND, the model assumed is the Voronoi tessel-

lation (see Fig. 4 for graphical examples). Polygons are

assumed to be centred on some artificially introduced

auxiliary points (referred to as nuclei). Making infer-

ence about clusters domains (and thus about cluster

memberships of individuals) amounts to inferring the

location and cluster memberships (thought of as col-

ours) of these polygons.
This component of the model is referred to as free

Voronoi tessellation, as the polygons are constructed

independently of the sampling sites. Related models

also based on polygons have been used by Blackwell

(2001) to model the territories of clans of badgers Me-

les meles (with nongenetic data) and by Wasser et al.

(2007) where the polygons are used to model prefer-

ential spatial sampling and/or variations of population

density in space. Polygon-based spatial cluster

domains impose some spatial consistency (in the sense

that they avoid complete spatial randomness) and

allow the interpolation of cluster membership, i.e. the

prediction of values outside the set of sampling sites.

In the case of the GENELAND program, specific features

include schemes to account for uncertainty in spatial

coordinates, to account for null alleles and estimate

their frequency at each locus, and the computation of

the posterior distribution of all inferred parameters.

The latter feature allows one to assess the relative con-

fidence one might place on each value of K and to get

a detailed probability map of assignments to evaluate

the degree of uncertainty of the estimated cluster

memberships.
Spatial model of cluster membership based on a graph

Motivations. Models based on free tessellations as

described above might have some drawbacks if the

putative spatial domains do not have simple shapes.

This might be the case in instances of assortative mat-

ing that are only weakly spatially structured. For

instance, in studies of human genetic variation at

small spatial scales, gene flow may be better

explained by social relationships than geographic dis-

tance (see, e.g. Britton et al. 2008 for a development

of this idea in epidemiology). If a complex spatial

pattern is expected it can be more fruitful to make

assumptions about the statistical distribution of cluster

membership of individuals that are spatial neigh-

bours, rather than making generic assumptions about

the spatial domains occupied by the sought-after clus-

ters.

A family of models designed exactly for this pur-

pose has long been used in statistical physics and

image analysis (see Hurn et al. 2003 and references

therein). The key idea, central to the methods used for

image de-noising, is that neighbouring pixels in an

image are more likely to share the same colour than a

set of pixels taken at random. By analogy, this idea

can be extrapolated to mean that individuals that are

neighbours are more likely to belong to the same clus-

ter than individuals taken at random over the whole

sampling area. This approach was taken in the model

proposed by François et al. (2006) and implemented in
� 2009 Blackwell Publishing Ltd
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the softwares GENECLUST (Ancelet & Guillot 2006) and

TESS (a simplified version of GENECLUST proposed by

Chen et al. 2007) and in the model proposed by Cor-

ander et al. (2008) and implemented under the spatial

option of the BAPS program. A model based on a simi-

lar rationale has also been used by Vounatsou et al.

(2000) to map haplotype frequencies. This idea

involves two steps: (i) defining what ‘neighbours’

means, which often entails some kind of arbitrariness

(especially when the sites sampled are not regularly

spaced) and (ii) modelling how likely ‘neighbours’ are

to belong to the same clusters.

Model. Towards step (i), both François et al. (2006) and

Corander et al. (2008) use a Voronoi tessellation. How-

ever, in contrast with Guillot et al. (2005a), this tessella-

tion is not constructed independently of the sampling

sites but built on them. This model is therefore referred

to as constrained Voronoi tessellation (see Figs S1–S3 for

examples). Loosely speaking, two sampling sites are

considered to be neighbours if there is no other sam-

pling site ‘around a straight line’ that joins them. This

has a number of drawbacks which will be discussed

later.

Toward step (ii), François et al. (2006) considered a

so-called Potts model. It is used to inject some informa-

tion about how likely ‘neighbours’ are to belong to the

same cluster. In this model, the log probability of an

individual belonging to a cluster, given the cluster

membership of its neighbours, is proportional to the

number of neighbours belonging to this cluster. In sta-

tistical physics, the proportionality coefficient w is

referred to as the interaction parameter. Quoting Ripley

(1991): ‘One problem with using Markov random field

priors is that their parameters are not immediately

interpretable […]’. It has usually no phenomenological

interpretation and should be viewed as a statistical way

of injecting the information that complete spatial ran-

domness is unlikely.

In the model proposed by François et al. (2006) and re-

used partly by Chen et al. (2007), the interpretation of the

interaction parameter is even more challenging. Indeed,

the model is defined on a graph which vertices depend

on the sampling scheme and, therefore, the interpretation

of the parameter changes with the sampling scheme. Esti-

mating the number of clusters in this model is a difficult

task and there is no solution implemented and validated

as of today (see discussion below). Corander et al. (2008)

proposed an alternative model in which the probability

of a given colouring model does not have a closed

expression but depends on the local properties of the

graph. This model does not belong to the mainstream

spatial statistics toolbox and is difficult to visualize and

interpret.
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The correct inference of population genetic structure

Problems related to the estimation of K. One of the most

challenging problems for clustering models is the cor-

rect estimation of the number of clusters K (here we

refer to the correct number in terms of statistical infer-

ence; see Waples & Gaggiotti 2006 for a discussion of

its biological meaning). In STRUCTURE, the estimation of

the number of clusters K is based on an approximation

of its posterior distribution obtained from Markov chain

Monte Carlo (MCMC) runs with different putative K

values proposed by the user. The program needs to be

run for each value of K and the corresponding approxi-

mate values of posterior probabilities need to be com-

pared which involves some subjective appreciation.

Evanno et al. (2005) have suggested that this procedure

lacked accuracy and proposed an alternative strategy.

According to Waples & Gaggiotti (2006), however, this

alternative strategy brings little improvement (see also

Latch et al. 2006 for an assessment of the accuracy of

Bayesian clustering programs).

The estimation of K within a formal statistical model

and algorithm has been first proposed by Dawson &

Belkhir (2001) and implemented in the PARTITION pro-

gram. Corander et al. (2003) and Corander et al. (2004)

tackled the problem with a slightly different algorithm

within a similar model. Subsequent developments of

the BAPS program include a scheme to use information

about known clusters (also referred to as baseline clus-

ters) (Corander et al. 2006), to estimate admixture coef-

ficients (Corander & Marttinen 2006) and to use linked

loci (Corander & Tang 2007). In the latest version of the

BAPS program, the estimation of K is based on a Monte

Carlo maximization of the posterior distribution. An

alternative model and algorithm to estimate K in the

no-admixture model has also been proposed by Pella &

Masuda (2006) and implemented in the STRUCTURAMA

program by Huelsenbeck & Andolfatto (2007).

GENECLUST does not formally address the question of

estimating K. Instead its strategy consists in fixing K to

a large value and counting the number of nonempty

clusters at the end of the run. Chen et al. (2007) intro-

duced one further simplification of the global algorithm

by skipping the estimation of the interaction parameter

in the TESS program. The claim by Chen et al. (2007) that

this omission provided accurate estimates of K has been

strongly criticized and it has been shown that inferences

in Tess can be highly inaccurate (Guillot 2009a,b). Fur-

thermore, it has been reported that setting the interac-

tion parameter w to 0 in GENECLUST and TESS produced

results comparable with those of the program STRUCTURE.

This is inaccurate because the inference of K is carried

out with different algorithms in the two programs (see

also, e.g. Cullingham et al. 2009 for empirical evidence).
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Guillot et al. (2005a) reported some concerns regarding

the estimation of K in GENELAND. These were related to

the use of a two-step algorithm (a first run to estimate

K, a second run with fixed K) and some other algorithm

weaknesses. These issues were solved in later versions

of the program (Guillot 2008; Guillot et al. 2009), where

the inference of the optimal number of K is based on a

single-step strategy (see also Dawson & Belkhir 2009)

that includes a review of some more specific clustering

models (e.g. where sought-after clusters are families).

Checking compliance with modelling assumptions and the

need for model selection methods. After having run a clus-

tering model, there is no straightforward way of con-

firming that the data set consists of the inferred number

of HWLE clusters. In addition, in contrast to domesti-

cated populations (see, e.g. Rosenberg et al. 2001, popu-

lation membership in wildlife can generally not be

independently validated and might not even exist. At

the very least, one can check that the inferred clusters

comply with the HWLE assumptions and that the allele

frequencies of the inferred genetic clusters are signifi-

cantly differentiated from each other. If the clusters are

not under HWLE, one can look for common sources of

discrepancy, including residual Wahlund effects (unde-

tected clusters due, e.g. to low differentiation), strong

IBD (see also below) or other forms of (spatially or non-

spatially structured) departure from random mating.

More generally, there is a need for statistical methods

allowing to select among various models implemented

in the clustering programs.

Decision from the output of several runs or

programs. Several authors have noted that different

clustering algorithms can infer different solutions for

the optimal partitioning of a data set. For example,

Rowe & Beebee (2007) reported noncongruent outputs

of BAPS, GENELAND and STRUCTURE when analysing genetic

data of Natterjack toads Bufo calamita in Great Britain.

This phenomenon can arise from differences in the

underlying models, in the statistical estimators or in

approximations in the algorithm used to compute this

estimator. It is in general difficult to disentangle the rel-

ative effects of these three sources of disagreement. It is

important to bear in mind that all programs discussed

here are based on MCMC and are hence prone to con-

vergence issues. This means that outputs of the pro-

grams might not be in certain cases the exact solution

of the mathematical equations but an approximation

which quality remains unknown. An efficient strategy

to check that program outputs are not subject to this

kind of error is to run a large number of long runs and

to check that those runs give similar outputs. Note that

the comparison of different runs must take the possible
swap or switch of cluster labels into account. This prob-

lem is known as the label switching issue in the analy-

sis of mixture models and can be addressed by the

computer programs CLUMPP (Jakobsson & Rosenberg

2007) and PARTITIONVIEW (Dawson & Belkhir 2009).

Given that different clustering algorithms can pro-

duce different solutions, it is good practice to analyse

genetic data with more than one method. If the outputs

coincide, it is suggestive of the presence of a strong

genetic signal (at least if the data set is not character-

ized by IBD; see below). If the various outputs do not

coincide, one can speculate that departure from model-

ling assumptions interplay with the usual MCMC con-

vergence issues. In this latter case, we warn against

ignoring the nonconvergence symptoms and choosing

the clustering solution that most conforms to some a

priori expectation (see Frantz et al. 2009 for an example

of how inferences based on a single algorithm could

lead to different conclusions compared with a consen-

sus based on several programs).

Isolation by distance, the cline vs. clusters dilemma and the

optimization of spatial sampling scheme. Effect of isolation

by distance and the cline vs. clusters dilemma. Another

confounding factor of the clustering algorithms is IBD.

All the models make sense fully only at a scale that is

small enough to ignore its effect. At larger spatial

scales, any species is affected by IBD and assuming

within-cluster panmixia becomes inappropriate.

Several authors have studied how clustering models

behave for organisms whose mating is restricted by dis-

tance. Frantz et al. (2009), Schwartz & McKelvey (2009)

and Guillot & Santos (2009) reported that clustering

models are affected by IBD regardless of the cluster

membership prior used (spatial or nonspatial). The gen-

eral effect reported is that the presence of clinal varia-

tions tends to be interpreted as the presence of clusters

and a number of clusters larger than one is generally

inferred, even though no barrier to gene flow was pres-

ent. Guillot & Santos (2009) observed that this effect is

weak in case of weak IBD. If the presence of IBD is sus-

pected, it is important to test compliance with HWLE

globally and for each inferred cluster. Plots of genetic

distances against geographic distances coloured accord-

ing to cluster memberships (as in McRae et al. 2005;

Rosenberg et al. 2005; Fontaine et al. 2007) can be a

great aid in assessing whether genetic variations are

explained by distance alone or whether other factors

are involved. An implementation of this method is

presented in Box 2. While it is recommended to imple-

ment this method, it may lack power for data sets with

continuous spatial sampling where only a small number

of clusters are inferred. We also note that this method

relies on a visual check and that there is a need for a
� 2009 Blackwell Publishing Ltd
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formal statistical method in this context. In practice, it

can be difficult indeed to distinguish between genuine

and artificial genetic clusters in data sets characterized

by IBD (see, for example Frantz et al. (2009).

What do spatial clustering models have to say about IBD per

se?. The view that most organisms are subject to IBD is

widely accepted (see Lawson-Handley et al. 2007; Sch-

wartz & McKelvey 2009 and references therein). The

use of a spatially dependent prior of cluster member-

ship (as in Guillot et al. 2005a; François et al. 2006)

amounts to injecting in the model the property that in

average (over all possible clusterings) the genetic simi-

larity decreases continuously with distance. However,

conditionally on the cluster membership variables, these

models assume the existence of several clusters at

Hardy–Weinberg equilibrium. As this condition is not

fulfilled for organisms whose mating is restricted by

distance only, spatial clustering models are not more

suitable than nonspatial clustering models for analysing

organisms under IBD.

How can spatial sampling schemes be optimized?. The opti-

mization of spatial sampling schemes is notoriously a

difficult question. One aspect of the problem is that the

optimal sampling depends on the true pattern which is

not known in advance. One has therefore to base the

decision on average expected features. Guillot & Santos

(2009) noted that the spatial sampling scheme (regular

or irregular, see Storfer et al. 2007; Schwartz & McKel-

vey 2009 for examples) plays little role in the way clus-

tering models are affected by IBD. Inferences were

found to be accurate regardless of the sampling scheme

used if the data set consists genuinely of HWLE clusters

and inaccurate if these clusters were subject to IBD. In

traditional geostatistical studies, it is often recom-

mended to sample the whole study domain but in such

a way that the various scales are investigated (contain-

ing both close and distant pairs of sampling sites; see

Diggle & Lophaven 2006; Diggle & Ribeiro 2007). The

recent study by Schwartz & McKelvey (2009) concludes

with similar recommendations.
Summary and discussion on clustering models

While genetic clustering of individuals is a task that,

strictly speaking, does not require the use of spatial

information, in natural populations most barriers to

gene flow are in some sense related to variables struc-

tured in space. The advantage of using spatial vs. non-

spatial clustering models is potentially the ability to get

more accurate results, in particular when analysing data

sets consisting of a small number of loci, or character-

ized by low levels of genetic differentiation (Guillot
� 2009 Blackwell Publishing Ltd
et al. 2005a; Frantz et al. 2006; Fontaine et al. 2007;

Dudaniec et al. 2008; Lecis et al. 2008). Existing models

have been used to address questions in ecology relating

to habitat specialization, habitat fragmentation, meta-

population dynamics (Coulon et al. 2008; Orsini et al.

2008), epidemiology (see Section ‘Using spatial genetics

methods to investigate disease spread’ in the Support-

ing Information), colonization patterns of endangered

or introduced species (Dudaniec et al. 2008; Janssens

et al. 2008; Lecis et al. 2008), population management

(Zannèse et al. 2006; Fuentes-Contreras et al. 2008) and

forensics (Frantz et al. 2006).

Although other modelling techniques would be possi-

ble, existing programs are all based on the constrained

(BAPS, GENECLUST and TESS) or free (GENELAND) Voronoi tes-

sellation. The advantage of the latter is to be indepen-

dent of the sampling scheme and to provide an (out-of-

sample) spatial prediction of population spread. This is

possible thanks to the use of auxiliary points (the

nuclei). This involves some extra computational burden

but has one important advantage: it provides directly a

map of cluster domains without subjective decision

incurred by manually post-processing estimated indi-

vidual cluster memberships. This map of posterior prob-

abilities of cluster membership can be interpreted as a

map of admixture coefficients and can be used, e.g. for

the study of secondary contact zones (Sacks et al. 2008).

We hope to have illustrated that the partitioning of

individuals into spatial domains based on genetic data

is not a straightforward problem. The relative ease with

which the various clustering programs can be utilized

should not lead to a blind faith in an output best sum-

marized by the incipit to chapter 3 of Chilès & Delfiner

(1999): Once a map is drawn, people tend to accept it.

Instead, one should be critical of results and consider

whether the underlying assumption of a model might

have been violated when analysing the data set at hand.

A case in point is IBD: as the clustering methods

assume the data set to consist of a number of panmictic

clusters, the presence of IBD in the data set can lead to

the identification of spurious clusters. It is apparent that

future spatial clustering models need to control for the

effect of IBD.

We urge researchers to use various Bayesian cluster-

ing approaches to investigate the spatial genetic struc-

ture in order to evaluate the robustness and reliability of

the inferred results. Different estimates of the number of

clusters can be obtained using slightly different models,

and even using slightly different algorithms under simi-

lar models. The results of similar models and algorithms

should agree in order to have confidence in the

proposed clustering solution. We can only emphasize

again not to ignore instances of nonconvergence, as they

might point towards spurious results. It might be
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helpful to consider whether all the inferred clusters can

be explained in a biologically meaningful way. How-

ever, the biological interpretation of the presence of

genetic discontinuities (and even sometimes their

absence) can be challenging. This is discussed further

below.
Conclusion

Summary

Current statistical methods rely mostly on IBD and clus-

tering models and allow one to relate genetic variations

to demographic and migratory processes, which can, in

turn, be related to some aspects of the surrounding

landscape. Recent methods comply with a broad variety

of spatial sampling schemes, particularly with continu-

ous spatial sampling, allowing more efficiently investi-

gation of how spatial patterns of genetic variations

relate to environmental features. On the other hand, the

current IBD or clustering models are still based on ide-

alized assumptions and investigations of the relation-

ship between genetic variations and landscape features

often rely on descriptive statistics that make it challeng-

ing to choose among several competing explanations.

Below, we outline several research directions in terms

of models or statistical inference techniques that might

help to improve methods in these respects.
Geostatistical models

The use of geostatistical ideas in population genetics

has probably been hampered by the difficulty of deal-

ing with multivariate and categorical data. In particular,

it has long been a difficult problem to capture the spa-

tial variation of categorical variables with a parsimoni-

ous model. This difficulty has now been partially

alleviated by hierarchical models (e.g. as in Wasser

et al. 2004), and the relative weak informativeness of a

single locus can be compensated by the increased avail-

ability of data sets including a large number of loci.

Although some difficulties can be anticipated regarding

the validity of spatial autocorrelation models (Matheron

1987, 1993; Chilès & Delfiner 1999), one important direc-

tion for future work could be to try to further relate

demographic and genetic parameters in a genetic model

to parameters of geostatistical models.
Marked point process models

Traditional spatial autocorrelation analysis relies on the

assumption that the location of sampling sites is not

informative about the process. This is the case, for

example, if one measures temperature at different sites
with either regularly spaced coordinates (nodes of a

regular grid) or sampled at random over the study

domain. In this case, the coordinates arise as a choice of

the scientist and do not reflect any intrinsic property of

the process under study. By contrast, sampling designs

in ecology are often dependent on the species density.

This dependence can arise if some prior knowledge

about population density is explicitly used in the sam-

pling design (e.g. one avoids to sample low population

density areas) or as a consequence of lower probability

to capture individuals in areas of low population den-

sity. In these cases, sampling locations can no longer be

considered as independent from genotypes but should

be considered as part of the process to be analysed and

modelled. In this context, standard results about corre-

lation functions and how they can be interpreted are no

longer valid. The situation where the variable (the

multi-locus genotype in our context) and the location of

measurements are both informative is addressed by so-

called marked point-process models (see Cressie 1994;

Schlather et al. 2004 and references therein). Schlather

et al. (2004) proposed some methodological develop-

ments to analyse data in exactly this situation. Unfortu-

nately for population geneticists, these methods only

consider a single quantitative variable. Some useful and

more context-specific modelling suggestions can be

found in Shimatani (2002), Shimatani & Takahashi

(2003) and Shimatani (2004).
Bridging the gap between clustering models and
isolation-by-distance models

While restricted dispersal leading to local genetic drift

and differentiation can be studied by IBD models, dif-

ferentiation induced by barriers to gene flow is

addressed by clustering models. In many studies, the

two factors interplay and one factor can act as a con-

founding factor in the assessment of the other one.

There is therefore a need for models allowing one to

assess and quantify in a unified conceptual and inferen-

tial framework the effect of restricted dispersal and bar-

riers on gene flow.
Assessing how plausible genetic structure is under
different scenarios

While some clustering results can be difficult to interpret

biologically, it is also possible that clusters do not match

any environmental feature at all (Zannèse et al. 2006; Sa-

hlsten et al. 2008). In this context, it can be useful to ana-

lyse simulated data to assess the validity of the inferred

clusters. For example, Frantz et al. (2009) used various

Bayesian clustering methods to infer the genetic structure

of a continuously distributed population of wild boar
� 2009 Blackwell Publishing Ltd



Box 2: Disentangling the effect of isolation by distance and of barriers to gene flow: an example in
seascape genetics

Fontaine et al. (2007) conducted a study on the harbour porpoise Phocoena phocoena, a highly mobile cetacean, using a

data set of 752 individuals sampled across Europe (panel A) and genotyped at 10 microsatellite loci. The authors

found evidence for the existence of at least three distinct genetic clusters (panel B). Given the spatial scale considered,

they suspected a confounding effect of IBD that might have been exacerbated by the irregular spatial sampling.

Pairwise FSTs are plotted against marine geographic distances, pairs of sites assigned to the same cluster are repre-

sented by triangles, while pairs of sites assigned to different clusters were represented by either a square or a dia-

mond depending on the cluster combination (panel C). This revealed that for a given class of spatial distances,

genetic distances are typically much larger for pairs of sites belonging to distinct clusters than for pairs of sites belong-

ing to the same cluster. This idea could be formalized a step further by applying a statistical test of equality of coeffi-

cients in the regression plot. This strongly suggests that differentiation is not solely caused by IBD but also by the

existence of a hidden variable. Further analysis revealed that the locations of genetic barriers coincide with areas of

changes in environmental characteristics (availability of nutrient panel D). This study provided for the first time evi-

dence that cryptic environmental processes have a major impact on the genetic and demographic structure of ceta-

ceans.
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(Sus scrofa). Different algorithms inferred different clus-

tering solutions and, in some instance, there was no eco-

logical explanation for the inferred genetic
� 2009 Blackwell Publishing Ltd
discontinuities. As it had been reported previously that

deviations from random mating that were not caused by

genetic discontinuities might bias results, the authors



Box 3: Resistance distance

Even if some of the models discussed in the identity by distance section include the possibility of nonhomoge-

neous density, they all assume that the landscape itself is homogeneous and in particular opposes the same resis-

tance to dispersal everywhere. This assumption can be problematic, for example, if dispersal pathways are

restricted to narrow corridors in certain areas. In this case, straight line geographical distances might not reflect

the underlying ecological process during dispersal events and distances integrating heterogeneities in dispersal

pathways might be more relevant. To address this issue, McRae (2006) suggested to use the resistance distance. In

analogy with circuit theory where current does not flow along a single one-dimensional path but across the whole

material, this distance is defined as the effective resistance that would oppose a conductive material displaying a

topology similar to that of the study area. Studies on mahogany trees and wolverines showed empirically that

resistance distance better correlated with genetic distances than the usual two-dimensional straight line distance.

Generally, the use of the resistance distance might help to reveal patterns of IBD in heterogeneous landscapes

that would not have appeared with the use of Euclidean distances. Pairwise plots of genetic distances vs. 2D

Euclidean (straight line) distances (A, C) and resistance distances (B, D). Open circles indicate pairs including the

most southern site (Figures reprinted from McRae & Beier 2007).
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analysed simulated data sets characterized by different

levels of IBD, with and without barriers to gene flow.

This approach confirmed that the inferred clusters might

be artefacts and the authors were unable to make firm

conclusion as to the presence of barriers to gene flow in

their study area.

Gauffre et al. (2008) recently investigated the popula-

tion genetic structure of common voles (Microtus arvalis)

in an agricultural landscape in France using individual-

based Bayesian clustering methods. Contrary to expec-

tations, a motorway in the study area was not associ-

ated with a spatial genetic discontinuity. Simulating

genotype data based on coalescence theory and plausi-

ble scenarios of genetic drift, the authors showed that,

despite simulating a complete dispersal barrier, the
effective population size of their study population was

too large for the populations to have diverged substan-

tially since the construction of the motorway.

More generally, before investing time and resources

into a spatial genetic study, it might be a worthwhile

exercise to analyse genotype data simulated under vari-

ous realistic migration–mutation–drift scenarios to assess

whether it is a priori likely that the empirical data set con-

sists of two or more clearly differentiated subpopula-

tions. One potential problem with simulating genetic

drift is that information on the effective size of the study

population is required. Both Frantz et al. (2009) and

Gauffre et al. (2008) got around this problem by simulat-

ing multiple data sets spanning a range of feasible values

and then selecting those data sets that most closely
� 2009 Blackwell Publishing Ltd
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resemble a specific parameter in their empirical data set:

in the former study the degree of IBD and in the latter

study the observed heterozygosity. Programs such as

EASYPOP (Balloux 2001), MS (Hudson 2002), METASIM (Strand

2002), GENELAND (Guillot & Santos 2009), IBDSIM (Leblois

et al. 2009) offer different complementary tools to simu-

late data. The recently introduced program DIYABC (Corn-

uet et al. 2008) allows one to infer parameters for one or

more scenarios and compute bias and precision measures

for given scenarios and therefore offers a flexible way to

investigate and compare competing evolutionary

hypotheses formulated from the clues gathered from

more classical models.
Injecting more biological knowledge into statistical
models

We have noted in this review that most quantitative

approaches are based on idealized and abstract models

that leave little possibility of injecting some biological

knowledge about the species, population or area under

study. For instance, landscape genetics studies for ter-

restrial species, marine species and fresh water fish are

carried out with the same statistical tools despite the

obvious differences, e.g. in terms of habitat and dis-

persal processes (see Galindo et al. 2006; Kalinowski

et al. 2008 for exceptions and Selkoe et al. 2008 for dis-

cussions about incorporation of ecological and oceano-

graphic information into seascape genetics study).

There is generally a need for more realistic models that

include species- and context-specific knowledge.

Designing such models would not necessarily comply

with the common usual requirement of a known and

well-defined prior and likelihood function. Approxi-

mate Bayesian computation methods (ABC; see, e.g. Sis-

son & Fan 2009 for a review) open an avenue for

carrying out inference in this kind of situations.
Need for model selection tools

The anticipated increase in models and programs in the

next few years will strengthen the need for tools for

model selection. This is a notoriously difficult problem

in statistics and the case of ecological and genetic mod-

els is particularly delicate as most of them are essen-

tially descriptive (as opposed to predictive) and there is

no obvious choice as to which criterion should be cho-

sen to compare models.
New challenges brought up by landscape genomics

So far, most landscape genetics studies have focused on

the analysis of neutral genetic variations. However, the
� 2009 Blackwell Publishing Ltd
rapid technological advents of sequencing technologies

will probably allow the development of landscape ge-

nomics. This emerging subdiscipline can be defined as

the genome-wide identification of molecular markers

potentially under selection and involved in adaptation

to different environments. In addition to the existing

issue of disentangling the effects of selection and drift,

one will have to face the challenge set by massive data

sets typical of genomics.
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66.

Matheron G (1993) Une conjecture sur la covariance d’un
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