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ABSTRACT
Reconstructing the demographic history of populations is a central issue in evolutionary biology. Using

likelihood-based methods coupled with Monte Carlo simulations, it is now possible to reconstruct past
changes in population size from genetic data. Using simulated data sets under various demographic
scenarios, we evaluate the statistical performance of Msvar, a full-likelihood Bayesian method that infers
past demographic change from microsatellite data. Our simulation tests show that Msvar is very efficient at
detecting population declines and expansions, provided the event is neither too weak nor too recent. We
further show that Msvar outperforms two moment-based methods (the M-ratio test and Bottleneck) for
detecting population size changes, whatever the time and the severity of the event. The same trend emerges
from a compilation of empirical studies. The latest version of Msvar provides estimates of the current and
the ancestral population size and the time since the population started changing in size. We show that, in
the absence of prior knowledge, Msvar provides little information on the mutation rate, which results in
biased estimates and/or wide credibility intervals for each of the demographic parameters. However,
scaling the population size parameters with the mutation rate and scaling the time with current population
size, as coalescent theory requires, significantly improves the quality of the estimates for contraction but not
for expansion scenarios. Finally, our results suggest that Msvar is robust to moderate departures from a strict
stepwise mutation model.

INFERRING past demography is a central concern in
evolutionary biology and applied ecology. Character-

izing past variations in population size is crucial, e.g., for
understanding the impact of past climatic fluctuations
on the current distribution of species ( Jacobsen et al.
2005; Elmer et al. 2009; Hu et al. 2009) and for the
conservation of endangered species (Frankham et al.
2002). Characterizing the demographic history of a spe-
cies by direct approaches requires the monitoring of
census data, which can be extremely difficult, not to
say impossible, particularly in long-lived species. Yet var-
iations in census numbers of individuals also affect the
dynamics of the genes carried by these individuals. A
powerful alternative to direct approaches is therefore to
use the recent advances in population genetic theory,
which allow inferences on past demography from the
observed distribution of genetic variation in natural
populations (Lawton-Rauh 2008).

Until recently, most of these indirect methods relied
on summary statistics calculated from genetic data and
tests for departure from their theoretical distribution
under a given demographic and mutational model
(Cornuet and Luikart 1996; Schneider and Excoffier

1999; Garza and Williamson 2001). For instance,
Cornuet and Luikart’s (1996) approach relies on the
rationale that rare alleles, which contribute marginally
to the heterozygosity, are more likely to be lost follow-
ing a bottleneck. A transient excess in heterozygosity,
compared to that expected at equilibrium given the
observed number of alleles in the sample, can therefore
be used as a proxy to detect a bottleneck (Luikart and
Cornuet 1998). Conversely, a transient heterozygosity
deficiency may provide evidence for a population expan-
sion (Cornuet and Luikart 1996; Leblois et al. 2006).
In the same line of ideas, Garza and Williamson

(2001) proposed a test to detect past population de-
clines, based on the ratio (M) of the number of alleles
to the range in allele size observed at microsatellite loci.
Because they are easy to implement and do not require
time-consuming computations, these moment-based
methods have been used in many empirical studies
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(see, e.g., Spencer et al. 2000; Comps et al. 2001;
Colautti et al. 2005). However, these methods suffer
from a limited statistical power because they do not
make full use of the data. Furthermore, they do not
provide any estimate of the severity and the duration
of the bottleneck.

Likelihood-based methods coupled with Monte Carlo
sampling offer a powerful alternative to these moment-
based methods (Felsenstein 1992; Griffiths and
Tavaré 1994; Emerson et al. 2001). They rely upon
the computation of the likelihood of a sample configu-
ration, i.e., the probability to observe the allele counts
or the DNA polymorphic sites in that sample, given
a demographic and mutational model. The parameters
of interest of the underlying model are then estimated
by maximizing the likelihood of the observed data.
Likelihood-based methods that have been developed for
inferring past demographic changes from the observed
distribution of genetic variation include, e.g., Batwing
(Wilson and Balding 1998; Wilson et al. 2003), Beast
(Drummond and Rambaut 2007), IM and IMa (Hey

and Nielsen 2004, 2007), Lamarc (Kuhner 2006),
and Msvar (Beaumont 1999). These methods differ
not only with respect to the underlying demographic
model, but also with respect to the markers used (mi-
crosatellites, DNA sequences, etc.). However, because
the computational burden required to evaluate statis-
tical power and accuracy is particularly high, only few
studies have attempted to test these methods (Wilson

et al. 2003; Abdo et al. 2004; Rousset and Leblois
2007; Chikhi et al. 2010; Strasburg and Rieseberg
2010).

Among those methods, the one developed by Beaumont
(1999), implemented in the software package Msvar
and further improved by Storz and Beaumont
(2002) and Storz et al. (2002), has been increasingly
used in the past few years to infer past demographic
changes (supporting information, Table S1). Msvar
assumes a demographic model consisting of a single
isolated population, which has undergone a linear or
exponential change in effective population size at some
time in the past. This method is designed to analyze
multilocus microsatellite data that evolve according
to a stepwise mutation model (SMM) (Ellegren 2004).
Msvar uses a Markov chain Monte Carlo (MCMC)
method to sample from the posterior distribution of
the model parameters (i.e., the current effective popu-
lation size, the ancestral effective population size before
the demographic change, the time at which the latter
occurred, and the mutation rate of microsatellite loci).

Although Msvar has been widely used, the statistical
performance of the method has never been extensively
evaluated. In his original article, Beaumont (1999) sim-
ulated a handful of data sets with known mutational and
demographic parameters and then evaluated the per-
formance of the method for detecting demographic
events and its sensitivity to the shape (linear or expo-

nential) of the demographic change. However, the pre-
cision of the estimation of the model parameters was
not evaluated. Furthermore, the performance of Msvar
with respect to the severity of demographic change, the
time since the population started changing in size, and
the mutation model has not been studied yet.

Here, we therefore aimed at evaluating the statistical
performance of Msvar (i) in detecting population
declines and expansions and (ii) in providing accurate
estimates of the model parameters, as a function of the
severity of the demographic change, the time since it
occurred, and the mutation model. To that end, we
performed stochastic simulations to generate micro-
satellite data sets under different demographic scenarios
and mutation models and then analyzed these simulated
data with Msvar. In light of our results, we comment
upon the published empirical studies that used Msvar
and provide some guidelines for future studies.

METHODS

Demographic model: The demographic model im-
plemented in Msvar (Beaumont 1999; Storz and
Beaumont 2002) considers an isolated panmictic pop-
ulation of size N0 at sampling time (t ¼ 0). Going back-
ward in time, the population size N(t) changes
deterministically (either linearly or exponentially) to
an ancestral size N1 at time t ¼ Ta and then remains
constant at N1 for t . Ta (Beaumont 1999). In the
following, we will consider only an exponential change
in population size, with

N ðtÞ5N0

�
N1

N0

�t=Ta

;

for 0 , t , Ta, and N(t $ Ta) ¼ N1. For simplicity, the
time is measured in units of generations, and population
sizes are expressed as numbers of diploid individuals.

Simulation study: To test how Msvar performed de-
pending upon the nature of the demographic change
(decline or expansion), its strength, and its time of oc-
currence, we simulated population declines and expan-
sions for a range of parameter values for the current
population size N0, the ancestral population size N1, and
the time Ta. The computational burden of the method
prevented an exhaustive exploration of the parameter
space. In a first set of simulations, we therefore concen-
trated on a set of parameter values that represented
a range of situations characterized by weak, moderate,
and strong changes in population size, with varying time
of occurrence. For population declines, we fixed the
current population size N0 ¼ 100 in all scenarios and
varied the ancestral population size N1 ¼ {1000; 10,000;
100,000} and the time since the demographic change Ta

¼ {10; 50; 100; 500}. For population expansions, we fixed
the ancestral population size N1 ¼ 100 in all scenarios
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and varied the current population size N0 ¼ {1000;
10,000; 100,000} and the time since the demographic
change Ta ¼ {10; 50; 100; 500}. A total of 24 sets of
demographic parameters were therefore considered.
For this first set of simulations, each locus evolved accord-
ing to a strict SMM, as assumed in Msvar. The mutation
rate m was set at 1023, which is in agreement with esti-
mates from the literature (Ellegren 2004).

Then, to test how Msvar performed depending upon
the mutation model, we performed a second set of
simulations. The mutation process of microsatellites is
complex and highly heterogeneous across loci and
organisms (Ellegren 2000, 2004). While some obser-
vations of spontaneous mutations support a strict SMM,
others suggest that multistep mutations occur, with a fre-
quency of multistep changes p varying from 0.04 to 0.74
(Ellegren 2000, 2004). Apart from a strict SMM, we
thus simulated microsatellite data under a generalized
stepwise model (GSM) with p ¼ 0.22, an average value
found in the literature (Dib et al. 1996; Ellegren 2000;
Estoup et al. 2001; Ellegren 2004), and with p ¼ 0.74,
the most extreme value reported ever (Fitzsimmons
1998). The mutation rate m was set at 1023. For that
second set of simulations, we considered a population
decline scenario (with N0 ¼ 100, N1 ¼10,000, and Ta ¼
500), a population expansion scenario (with N0 ¼
10,000, N1 ¼100, and Ta ¼ 500), and a stable popula-
tion scenario, taking the (constant) population size as
the harmonic mean of the population size change from
100 to 10,000 for Ta ¼ 500 generations; i.e., N0 ¼ N1 ¼
464. This second set of simulations therefore consisted
of seven sets of parameters: three mutation models were
considered for the stable population scenario (the
SMM and the two GSMs), and two mutation models
were considered for each of the declining and expand-
ing population scenarios (the two GSMs).

Microsatellite data were simulated with Simcoal2
(Laval and Excoffier 2004), which generates sam-
ples of genes under various demographic models, using
a discrete-generation coalescent algorithm. Discrete-
generation algorithms produce simultaneous andmultiple
coalescences, which are canceled out in the continuous-
time approximation of the coalescent. There might there-
fore be a slight discrepancy between the coalescence rate
in the discrete-generation algorithm and the continuous-
time approximation that is assumed in Msvar, particularly
for large sample sizes and small effective population size
(see, e.g., Figure S2 in Cornuet et al. 2008). However,
we find it more relevant to simulate the data without
relying on approximations. Each data set consisted of
a sample of 50 diploid individuals, genotyped at 10 un-
linked microsatellite loci. This sampling scheme is consis-
tent with empirical studies that inferred past demographic
changes using Msvar: from an exhaustive survey of the
literature (Table S1), we found that the median numbers
of microsatellite loci and sampled individuals across data
sets were 11.5 and 30, respectively.

For each set of parameters, we simulated five micro-
satellite data sets to have replicates from the same
underlying demographic and mutation model. We
therefore obtained a total of 120 simulated data sets
for the first set of simulations and 35 data sets for the
second set. For each set, we calculated the mean and
standard deviation over the five replicates of the
expected heterozygosity He (Nei 1978), the observed
number of alleles Na, the range in allele size Ar, and the
variance of allele range Va, using Arlequin (Excoffier

et al. 2005).
Parameterization of Msvar: In Msvar, the posterior

distribution of the model parameters is computed
by means of a MCMC method using the Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings

1970). The likelihood is calculated from the genealog-
ical history of the sample of genes, represented as a
sequence of events (coalescences and mutations, see
Beaumont 1999).
We used version 1.3 of Msvar, which provides

separate estimates for N0, N1, m, and Ta (Storz and
Beaumont 2002). This implementation of Beaumont’s
(1999) method, available at http://www.rubic.rdg.ac.uk/
�mab/stuff/, relies upon a hierarchical model where
demographic and mutational parameters are allowed
to vary among loci. The extent of interlocus variation is
set by priors, as described in File S1. The parameter
values reported in the following correspond to the mean
of N0, N1, Ta, and m, across loci. To test whether the
method could retrieve information from the data, we
chose relatively flat priors on the mean parameters, in-
cluding the mutation rate.
Implementation: Analyses were run on a Beowulf

cluster made of 19 computer nodes, with CPUs ranging
from biprocessors AMD Opteron monocore running at
1.8 GHz to biprocessors Intel Xeon quadcore running
at 2.0 GHz. For each of the simulated data sets, three
independent Msvar analyses were performed, with
different starting values of the model parameters and
different sets of seeds for the random number gener-
ator. For the first set of simulations (strict SMM with
population size change), each Markov chain was
initially run for 109 steps and was thinned to 40,000
output lines by recording parameter values every
25,000 steps. In the absence of convergence, longer
chains were run (see results). For the second set of
simulations (strict SMM with stable population and
GSM with stable, expanding, and declining popula-
tions), each Markov chain was run for 3 · 109 steps,
with parameter values recorded every 30,000 steps.
The first 10% of steps of the chains were discarded as
burn-in. For each data set, convergence was assessed by
computing the multivariate extension of Gelman and
Rubin’s diagnostic (Brooks and Gelman 1998) on
the three independent Markov chains. Gelman and
Rubin’s diagnostic is based on the computation of the
ratio of the pooled-chains variance over the within-
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chain variance, which should be close to 1 if the chains
converge to the target distribution. The multivariate
Gelman and Rubin’s diagnostic was calculated from
the means M [ {MN0

, MN1
, MTa

, Mm} and standard devi-
ations V [ {VN0

, VN1
, VTa

, Vm} of Msvar parameters across
loci, using the CODA package (Plummer et al. 2006)
implemented in the statistical software R (R Develop-

ment Core Team 2009). Although it might be recom-
mended to run more chains to compute Gelman and
Rubin’s diagnostic (e.g., Nettel et al. 2009 used eight
independent chains), the computational burden pre-
vented us from running more than three chains in the
present study.

Analysis of Msvar outputs: Msvar outputs were
analyzed by focusing on two issues: (i) the performance
of Msvar at detecting past demographic changes and
(ii) the precision of Msvar estimates of the model
parameters. For each of the simulated data sets, we
combined the three Markov chains before running the
following analyses. The strength of evidence of popula-
tion expansion vs. population decline (and vice versa)
was evaluated using Bayes factors ( Jeffreys 1961; Kass
and Raftery 1995), as suggested by Beaumont (1999)
and Storz and Beaumont (2002). The Bayes factor is
a ratio where the numerator is the posterior probability
of one model divided by its prior probability and the
denominator is the posterior probability of an alterna-
tive model divided by its prior probability (Gelman et al.
1995). With identical priors for the population decline
and the population expansion models (i.e., identical
priors for N0 and N1), the Bayes factor for, e.g., a pop-
ulation decline is the ratio of the posterior probability
of a population decline divided by the posterior proba-
bility of a population expansion. This ratio can be esti-
mated by counting the number of states in the chain in
which the population has declined (i.e., N0/N1 , 1) and
then dividing this by the number of states in which the
population has expanded (i.e., N0/N1 . 1) (see Storz
and Beaumont 2002).

We estimated the marginal posterior distributions
of the model parameters using the LOCFIT package
(Loader 1999) implemented in R (R Development

Core Team 2009). Point estimates of natural parame-
ters N0, N1, Ta, and m were computed from the mode of
their marginal posterior distribution. The 90% highest
probability density (HPD) intervals were computed with
the CODA package. We also estimated the marginal
posterior distributions of the scaled parameters u0 [
4N0m, u1 [ 4N1m, and t f [ Ta/(2N0), and we computed
point estimates and 90% HPD intervals for these scaled
parameters. For each demographic scenario consid-
ered, we calculated the absolute value of the bias for
both natural and scaled parameters over the five repli-
cated data sets.

Detection of population size change with Bottleneck
and the M-ratio test: Finally, for the first set of simu-
lations (strict SMM with population size change), we

compared the performance of Msvar to detect genetic
signatures of demographic changes with the two most
widely used moment-based methods available for micro-
satellite data. First, we analyzed the data sets using the
method developed by Cornuet and Luikart (1996)
and implemented in the software package Bottleneck
v.1.2 (Cornuet and Luikart 1996). Wilcoxon signed-
rank tests were performed to determine if a data set
exhibited a significant number of loci with heterozy-
gosity excess as expected in bottlenecked populations
(Luikart et al. 1998) or with heterozygosity deficiency
as expected in expanding populations (Cornuet
and Luikart 1996). Second, we calculated Garza and
Williamson’s (2001) M ratio on the 60 data sets cor-
responding to population declines. We compared em-
pirical values of the M ratio to 95% critical values (Mc)
derived from 10,000 simulations of stable populations
using the program Critical_M. Simulations were per-
formed using the true value of u1 (u1 ¼ 4, 40, and 400
in the scenarios considered) and assuming a strict step-
wise mutation model. We considered that an M ratio
below the critical valueMc was indicative of a population
decline.

RESULTS

Genetic diversity of the simulated data sets, under
a strict SMM: For the first set of simulations (strict SMM
with population size change), the expected heterozy-
gosity He, the number of alleles Na, and the range in
allele size Ar are reported in Table 1. For contraction
scenarios, He ranged from 0.24 to 0.94. Na ranged from
2.3 to 23.7 and Ar varied from 1.3 to 39.2. In agreement
with theoretical expectations, He, Na, and Ar increased
with N1, the genetic diversity in the current population
being sustained by large ancestral populations. Further-
more, genetic diversity decreased with increasing Ta,
the loss of genetic diversity being more pronounced
for long contraction events. For expansion scenarios,
He ranged from 0.30 to 0.58. Na ranged from 2.7 to
4.9 and Ar varied from 1.8 to 4.0. In agreement with
theoretical expectations, He, Na, and Ar increased with
increasing Ta since the number of mutations that seg-
regate in the population increases with the age of the
expansion event. We also observed a tendency for ge-
netic diversity to increase with increasing N0, although
this trend was not clear cut.

MCMC convergence: In the following, we used
Gelman et al.’s (2004) rule of thumb, which suggests
that values of the multivariate Gelman and Rubin’s con-
vergence diagnostic between 1.0 and 1.1 indicate rea-
sonable convergence, whereas values .1.1 indicate
poor convergence. Of the 120 analyses of the first set
of simulations, 67 converged after 109 steps (Table S2).
The average computational time of these chains was 1.5
days for expansions and 3 days for contractions. The 53
nonconverged analyses were run again for 3 · 109 steps
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and were thinned to 120,000 output lines by record-
ing parameter values every 25,000 steps. Of these 53
analyses, 20 converged after 3 · 109 steps, which took
on average 20 days per chain. Finally, the last 33 non-
converged analyses were run for 1.5 · 1010 steps, which
took 60 days per chain on average. Of these 33 analyses,
16 converged after 1.5 · 1010 steps. Therefore, a total of
17 analyses of 120 (14.2%) did not converge after 1.5 ·
1010 steps. Most of these nonconverged analyses corre-
sponded to recently and severely bottlenecked pop-
ulations (Ta , 500 and N0/N1 ¼ 0.001; Table S2).
However, visual inspection of the three chains in the
nonconverged analyses, as well as the similarity of the
marginal posterior distributions, suggested that the chains
were close to equilibrium. Therefore, we included the
17 nonconverged analyses in our results. The cumula-
tive computation time for the completion of all the
analyses included in our study exceeded 276 · 103 hr
(33.5 years). There was a significantly positive correla-
tion between the time of convergence and the average
range in allele size Ar in the sample for both contrac-
tions (Spearman’s r ¼ 0.82; P , 0.001) and expansions
(Spearman’s r ¼ 0.49; P , 0.001).
Detection of demographic events with Msvar, under

a strict SMM: Bayes factors (BF) were computed for
each of the 120 analyses of the first set of simulations
and interpreted following Jeffreys (1961): BF $ 10
indicate strong support, BF ranging from 3 to 10 indi-
cate substantial support, BF ranging from 0.33 to 3 in-
dicate no support, and values ,0.33 indicate false
detection of contraction or expansion. In 85 analyses
of 120 (70.8%), Bayes factors indicated a change in
population size consistent with the simulated scenario
with substantial to strong support (BF $ 3 and BF $ 10,
respectively; see Figure 1). Of the 60 Markov chains
corresponding to contraction scenarios, 41 (68.3%) in-
dicated a population decline (BF $ 3), of which 40
(97.6%) showed strong support (BF $ 10). Fifteen of
these 40 analyses (37.5%) did not converge. Of the 60
analyses corresponding to expansion scenarios, 44
(73.3%) indicated a population expansion (BF $ 3),
of which 34 (77.3%) showed strong support (BF $
10). Two of these 34 analyses (5.9%) did not converge.
Overall, all the ancient (Ta $ 50) and severe demo-
graphic changes (N0/N1 # 0.01 for contractions and
N0/N1 $ 100 for expansions) were detected with sub-
stantial to strong support (Figure 1). By contrast, recent
declines and expansions (Ta ¼ 10) were largely un-
detected (BF , 3), except for strong contractions
(N0/N1 ¼ 0.001). Moreover, weak contractions (N0/N1 ¼
0.1) were largely undetected whatever their time of
occurrence and one false expansion was even detected
for an ancient and weak bottleneck (BF , 0.33, Ta ¼
500, N0/N1 ¼ 0.1).
Comparison of Msvar with moment-based methods:

Because Bayes factors cannot be formally compared to
P-values, we were not able to use the same criterion for
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detecting population size change with Msvar, Bottle-
neck, and the M-ratio test. Therefore, we reported in
Figure 2 the criteria that are generally used in empirical
studies: BF $ 3 for Msvar, the result of the Wilcoxon
signed-rank tests at the a ¼ 0.05 level for Bottleneck
(Cornuet and Luikart 1996), and an M ratio below
the critical value Mc (Garza and Williamson 2001) for
the M-ratio test.

Bottleneck detected a significant excess of heterozy-
gosity in only 5 of the 60 data sets corresponding to
contraction scenarios (8.3%). Ancient events (Ta ¼
500) were never detected whatever their severity. More-
over, there was no clear relationship between the rate of
detection of population decline and the severity of the
event. Finally, 4 data sets corresponding to ancient con-
tractions (Ta $ 100) showed significant heterozygote
deficiency, hence supporting population expansions.
Contrastingly, Bottleneck detected a significant defi-
ciency in heterozygosity in 35 of 60 data sets corre-
sponding to expansion scenarios (58.3%). Garza and
Williamson’s (2001)M-ratio method correctly detected
a signal of contraction in 32 of 60 data sets (53.3%).
The rate of detection was higher for ancient (Ta $ 50)

and moderate-to-severe population declines (N0/N1 $
0.01), with 26 significant tests of 30. Recent (Ta ¼ 10)
and/or weak declines (N0/N1 ¼ 0.1) were barely de-
tected (6 significant tests of 30).

Estimation of demographic and mutational parame-
ters with Msvar, under a strict SMM: Demographic and
mutational parameters were estimated for all data sets,
by combining the three Markov chains run for each
data set. We assessed the quality of the estimates by
examining the marginal posterior distributions of the
parameters, compared to their prior distributions. We
summarized these results by calculating the modes and
the 90% HPD intervals for each data set (Figure S1,
Figure S2, Figure S3, and Figure S4) as well as the ab-
solute value of the bias and the average HPD range over
the five replicate data sets for each of the 24 demo-
graphic scenarios (Figures 3 and 4).

Estimates of the natural parameters N0, N1, Ta, and m:
Overall, the marginal posterior distributions of the
demographic parameters N0, N1, and Ta were wide
and departed only slightly from the priors (e.g., Figure
5, A and B). The estimated 90% HPD limits were there-
fore broad (Figure 3), ranging from 24 to 8 in log10
scale (Figure S1 and Figure S2).

For contractions, replicated data sets tended to pro-
vide more consistent results for old and severe events,
compared to recent events (Ta ¼ 10) or events of low
severity (N0/N1 ¼ 0.1) (Figure S1). The precision of the
demographic parameter estimates tended to increase
with increasing severity of the demographic change
(measured by the ratio N0/N1) and the time of the
event: (i) the 90% HPD range of the demographic
parameter estimates decreased with increasing N0/N1

(Figure 3 and Figure S1); (ii) for moderate to strong
contractions (N0/N1 . 0.1), the 90% HPD range de-
creased with increasing Ta; and (iii) for N0/N1 ¼ 0.1,
the 90% HPD range was the lowest for intermediate
values of Ta. The absolute value of the bias of N0 esti-
mates tended to be lower than that of N1 and was max-
imized for recent events (Ta ¼ 10).

The quality of the estimates of N0, N1, and Ta was
poorer for expansions, compared to contractions. The
marginal posterior distributions were not sharply
peaked and did not depart markedly from the priors.
The 90% HPD limits were wide and the absolute value
of the bias was high, overall (Figure 3). This was true
whatever the severity of the event and its time of occur-
rence. It is noteworthy that, with few exceptions, all de-
mographic parameter estimates differed markedly across
replicate data sets (Figure S2). We noted that for a given
expansion severity, estimates of N0 increased with Ta,
while estimates of N1 decreased with Ta (Figure S2).

For contractions and expansions, the marginal pos-
terior distributions of m departed only slightly from the
prior distributions, whose mean was set at am ¼ 24 on
a log10 scale. Because the true mutation rate m of the
simulated data sets was set at 23 on a log10 scale, the

Figure 1.—Detection of change in population size with
Msvar. For population declines (left) and population expan-
sions (right), the Bayes factors (BF) are given for each set of
demographic parameters N0, N1, and Ta for each replicated
data set (lines). Following Jeffreys (1961), BF $ 10 indicate
strong support, and BF ranging from 3 to 10 indicate substan-
tial support. BF ranging from 0.33 to 3 indicate no support
and values ,0.33 indicate false detection of contraction or
expansion. Nonconverged (NC) analyses are also indicated.
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mutational parameter m was therefore systematically
underestimated, as already pointed out by Milton

et al. (2009). The 90% HPD intervals of the marginal
posterior distributions of m were wide (data not shown).

Finally, we examined the patterns of correlation be-
tween natural parameters to assess the performance of
Msvar to estimate natural parameters separately. We
observed strong correlations between natural parame-
ters of the model. Overall, both N0 and N1 were nega-
tively correlated with the mutational parameter m and
there was a positive correlation between N0 and Ta (Fig-
ure S5). The correlations were stronger for more severe
events and more ancient events. Furthermore, the cor-
relations were more pronounced for contractions than
for expansions.

Estimates of the scaled parameters u0, u1, and tf: Scaled
parameters were overall much more precisely estimated
than the natural parameters for contractions, whereas
they were poorly estimated for expansions. As with the
natural parameters, the quality of the estimates de-
pended upon the severity of the demographic change
and its time of occurrence.

For contractions, the marginal posterior distributions
of the scaled parameters u0, u1, and tf were very peaked
and departed markedly from the prior distributions

(e.g., Figure 5, C and D), except for contractions of
low severity (N0/N1 ¼ 0.1). The precision (low bias,
narrow 90% HPD interval) increased with increasing
severity of the event and time of occurrence (Figure 4
and Figure S3). In particular, estimates of u1 and t f were
overall very precise for moderate to severe bottlenecks
(N0/N1 , 0.1), except for very recent events (Ta ¼ 10).
Although u0 was also well estimated for ancient declines
(Ta . 50) from moderate to strong severity, the bias
and the range of 90% HPD intervals were larger com-
pared to those of u1. Replicate data sets provided con-
sistent results for u1 and tf, for moderate and strong
contractions (N0/N1 , 0.1) that occurred .10 genera-
tions ago (Ta . 10). Larger variation across replicate
data sets was observed for u0.
For expansions, the marginal posterior distributions

of the scaled parameters u0 and u1 were peaked and
departed markedly from the prior distributions (data
not shown). However, the mode of the marginal poste-
rior distributions for u0 departed markedly from the
true simulated value, resulting in severe biases (Figure
4 and Figure S4). By contrast, the scaled parameter u1
exhibited low bias in all scenarios (Figure 4), although
the 90% HPD intervals were wide, especially for weak
and recent expansions (N0/N1 ¼ 10; Ta . 10). We

Figure 2.—Detection of change in population size with Bottleneck, the M-ratio test, and Msvar. For population declines with
N0 ¼ 100 (left set of panels), Bottleneck, theM-ratio test, and Msvar are compared. For population expansions with N1 ¼ 100 (right
set of panels), only Bottleneck and Msvar are compared. Squares with dark shading indicate detection with Msvar, the M-ratio test,
or Bottleneck; squares with light shading indicate no detection; and solid squares indicate detection with Msvar or Bottleneck of
the “wrong” event. Bottleneck: NS, not significant.M-ratio test: Mc is the critical value below which the test is significant. Msvar: BF,
Bayes factor.
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noted that the marginal posterior distributions of
u0 and u1 were skewed, respectively, to upper and lower
values (Figure 4 and Figure S4). The 90% HPD intervals
of the marginal posterior distributions for the time pa-
rameter t f were wide in most conditions (Figure 4 and
Figure S4) and estimates were severely biased, except
for Ta ¼ 500. Both the 90% HPD interval and the bias
decreased with increasing Ta. We observed large varia-
tions across replicate data sets for all scaled parameters
in almost all situations, particularly for t f.

Influence of the mutation model in Msvar: Of the 30
analyses presented in Figure 6 for the GSM, 12 (40%)
did not converge after 3 · 109 steps. Out of these, 9
analyses (75%) concerned the data sets generated with
the strongest GSM (p ¼ 0.74). With data generated un-
der the moderate GSM (p ¼ 0.22), Msvar successfully
detected a population decline for the five simulated
data sets and a population expansion for four simulated
data sets of five. However, Msvar detected a false signal
of population decline for two data sets of five that were
simulated under a stable population scenario (Figure
6). Under a strong GSM (p ¼ 0.74), Msvar detected a
signal of population decline with strong support (BF $
10), whatever the simulated scenario (Figure 6).

The quality of Msvar estimates of scaled parameters
for the moderate GSM (p ¼ 0.22) was very similar to
that observed for the strict SMM, with very precise esti-

mates of u1 and t f, a slightly larger bias, and 90% HPD
intervals for u0 compared to u1 in contraction scenarios
and poorer estimates, with large variations across re-
plicate data sets, in expansion scenarios (Figure S6).
For stable population scenarios, both the strict SMM
and the moderate GSM (p ¼ 0.22) produced unbiased
estimates of u0 and u1, but with very large 90% HPD
intervals. Note that in the absence of population size
change, estimates of t f are meaningless. Very consis-
tently, Msvar produced biased estimates of the model
parameters, with very narrow 90% HPD intervals, for all
the data sets generated under the strong GSM (p ¼
0.74) (Figure S6).

DISCUSSION

Comparing Msvar, Bottleneck, and the M-ratio test:
Bottleneck performed poorly in detecting population
declines from our simulated data sets under a SMM,
with only 5 significant tests of 60. The statistical power
of Bottleneck for population declines is much lower
when microsatellite loci evolve under a strict SMM than
under an infinite-allele model (Cornuet and Luikart
1996) or a GSM (Leblois et al. 2006). This may partly
explain the low performance of Bottleneck in our com-
parative study. Our results for weak population declines
(N1/N0 ¼ 10) are in agreement with previous

Figure 3.—Precision of the estimates of the natural demographic parameters N0, N1, and Ta. Bias (histograms) and absolute
value of the range of the 90% HPD interval (horizontal colored traits) for natural demographic parameters N0, N1, and Ta (from
left to right) are presented in a log10 scale. Top, population declines; bottom, population expansions. In each graph, the dotted
vertical line separates scenarios of increasing severity (N1 ¼ 1000, N1 ¼ 10,000, and N1 ¼ 100,000 for population declines and N0 ¼
1000, N0 ¼ 10,000, and N0 ¼ 100,000 for population expansions). For each severity, the time of occurrence of the demographic
event Ta is represented by different colors (orange for Ta ¼ 10, light green for Ta ¼ 50, dark green for Ta ¼ 100, and blue for
Ta ¼ 500).
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simulation-based evaluations, given the set of demo-
graphic and mutational parameters considered here
(see, e.g., Figure 3B in Cornuet and Luikart 1996).
For moderate to severe population declines (N1/N0 $

100), however, the rate of detection was lower in our
study than in Cornuet and Luikart (1996). Two pos-
sible reasons may explain this discrepancy. First, the
average heterozygosity in our simulated data sets was

Figure 4.—Precision of the estimates of the scaled parameters u0, u1, and t f. Bias (histograms) and absolute value of the range of
the 90% HPD interval (horizontal colored traits) for scaled parameters u0, u1, and t f (from left to right) are presented in a log10
scale. Top, population declines; bottom, population expansions. In each graph, the dotted vertical line separates scenarios of
increasing severity (N1 ¼ 1000, N1 ¼ 10,000, and N1 ¼ 100,000 for population declines and N0 ¼ 1000, N0 ¼ 10,000, and N0 ¼
100,000 for population expansions). For each severity, the time of occurrence of the demographic event Ta is represented by
different colors (orange for Ta ¼ 10, light green for Ta ¼ 50, dark green for Ta ¼ 100, and blue for Ta ¼ 500).

Figure 5.—Marginal posterior density of N0,
N1, and Ta and u0, u1, and t f for an ancient and
severe population decline. All densities are repre-
sented in a log10 scale. (A) Population size natural
parameters N0 and N1. (B) Time natural parame-
ter Ta. (C) Scaled parameters u0 and u1. (D)
Scaled parameter t f. The scenario corresponds
to an ancient (Ta ¼ 500) and severe population
decline (N0 ¼ 100, N1 ¼ 100,000). The true values
of the parameters in a log10 scale (N0 ¼ 2, N1 ¼ 5,
Ta ¼ 2.70, u0 ¼ 20.40, u1 ¼ 2.60, t f ¼ 0.40) are
indicated by the vertical dotted line in each
graph. The prior distributions of the parameters
are given by the shaded dashed curve in each
graph.
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overall higher than in Cornuet and Luikart (1996)
who considered a variable mutation rate across loci and
simulations, to cover a range of heterozygosities per set
of parameters. Second, we simulated an exponential
change of population size, whereas Cornuet and
Luikart (1996) assumed an instantaneous reduction
of population size in their simulation-based tests. The

impact of the shape of the demographic change on the
performance of Bottleneck has not been studied yet.
Consistent with our study, the simulation-based evalua-
tion of Bottleneck by Leblois et al. (2006) also showed
a low statistical power of the method. Interestingly,
Bottleneck performed largely better for expansions
(58.3%) than for contractions (8.3%), given the model
parameter values of our study.

We found that the M-ratio test was more efficient than
Bottleneck, which is consistent with Leblois et al. (2006),
for retrieving signals of population declines from our
simulated data sets (32 significant tests of 60). The rate
of detection was higher for ancient and moderate-to-
severe declines, while recent and weak declines were
barely detected. These results are consistent with pre-
vious simulation-based studies that have shown that the
M-ratio test has low statistical power for small u1 val-
ues (here, u1 ¼ 4, see Garza and Williamson 2001;
Williamson-Natesan 2005) and for recent population
declines (see Williamson-Natesan 2005; Leblois et al.
2006). Here, we applied the M-ratio test by comparing
the statistic M estimated from the data with the ex-
pected distribution of that statistic, conditionally on
the true value of u1. This procedure increased the sta-
tistical power of the M-ratio test. Since the true value of
the parameter u1 is generally unknown in real situations,
Garza and Williamson (2001) recommended the use
of Mc ¼ 0.68 as a conservative threshold for the critical
value. The reanalysis of our data sets withMc ¼ 0.68 (e.g.,
as in Leblois et al. 2006) resulted in a lower rate of de-
tection (22 significant tests of 60), but in similar quali-
tative trends (higher rate of detection for severe and
ancient population declines).

Given the set of demographic and mutational param-
eters used in our study, and using the decision criteria
recommended by the developers of each method,
Msvar clearly outperformed the M-ratio test and Bottle-
neck for detecting population size change. While Msvar
correctly detected 68.3% of the declines, the M-ratio
test and Bottleneck detected only 53.3% and 8.3%, re-
spectively, of the declines. Any population decline
detected by the M-ratio test and Bottleneck was also
recovered by Msvar, apart from one case of weak recent
decline that was identified only by Bottleneck (Ta ¼ 10
and N0/N1 ¼ 0.1). Therefore, our study does not sup-
port the previous claims that the M-ratio test and Bot-
tleneck are best suited to detect recent population
declines, whereas Msvar is more appropriate to detect
ancient contractions (Garza and Williamson 2001;
Williamson-Natesan 2005). Moreover, while Msvar
detected 73.3% of the population expansions, Bottle-
neck detected only 58.3% of the expansions. Any ex-
pansion detected by Bottleneck was also recovered by
Msvar.

Performance of Msvar: What does coalescent theory
tell us? Not surprisingly, we found that the performance
of Msvar to infer past demography strongly depended

Figure 6.—Detection of change in population size with
Msvar. The Bayes factors (BF) are given for each of the fol-
lowing demographic scenarios: a stable population (with N0 ¼
N1 ¼ 464, Ta ¼ 500), a declining population (with N0 ¼ 100,
N1 ¼10,000, and Ta ¼ 500), and an expanding population
(with N0 ¼ 10,000, N1 ¼100, and Ta ¼ 500). We considered
three different mutation models, which differ from each other
by the value of p, the frequency of multistep mutation
changes: p ¼ 0.00 (stepwise mutation model, SMM), p ¼
0.22 (moderate generalized stepwise model, GSM1), and p ¼
0.74 (strong generalized stepwise model, GSM2). For the sta-
ble population scenario, the lower triangle provides the Bayes
factor for a population decline (i.e., the ratio of the posterior
probability of a population decline divided by the posterior
probability of a population expansion), and the upper trian-
gle provides the Bayes factor for a population expansion (i.e.,
the ratio of the posterior probability of a population expan-
sion divided by the posterior probability of a population de-
cline). Following Jeffreys (1961), BF $ 10 indicate strong
support, and BF ranging from 3 to 10 indicate substantial
support. BF ranging from 0.33 to 3 indicate no support and
values ,0.33 indicate false detection of contraction or expan-
sion. Nonconverged (NC) analyses are also indicated.
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on the information available in the data, which may be
inferred from coalescent theory. Coalescent theory in-
deed predicts that variations in population size strongly
affect the shape of gene genealogies, which are star
shaped with long terminal branches in expanding
populations and shallower in declining populations
(Figure 7 and Hein et al. 2005).

Coalescent theory further shows that only scaled para-
meters can be directly estimated from the data (Tavaré
et al. 1997; Nordborg 2007). Indeed, all parameters in
coalescent models are scaled, and the likelihood func-
tion in Msvar makes no exception (Beaumont 1999).
Hence, inference of unscaled quantities such as popu-
lation size, or time measured in generations, requires
external information. In our study, unscaled parame-
ters were therefore much less precisely estimated than
the scaled ones (Figure 5) and were also highly corre-
lated (Figure S5; see also Figure 5 in Storz et al. 2002).
We deliberately chose poorly informative priors, to test
the capacity of Msvar to retrieve information from the
data only. In empirical studies, more informative priors
of the natural parameters are usually specified. We ac-
knowledge that Msvar offers a principled approach for
providing prior information on the mutation rate, to
recover posterior densities for natural parameters. Yet
it should be borne in mind that precise estimates of
unscaled parameters may then largely stem from the

specification of the priors. Imagine that analyses were
performed using a prior distribution for the mutation
rate with very low standard deviation (i.e., sm close to
zero). We would then necessarily recover the same level
of precision for the natural parameters and the scaled
parameters. Yet this improved precision may come at
the expense of accuracy, if the prior distribution for the
mutation rate departs from its true distribution.
Scenarios of population decline: Msvar was very efficient

for detecting population declines. However, its perfor-
mance for detecting change in population size and
accurately estimating the model parameters was lowest
for recent events (Ta ¼ 10) of low-to-moderate severity
(N0/N1 $ 0.01), as well as for events of low severity
(N0/N1 ¼ 0.1). This is expected since, for very re-
cent declines, the gene genealogy can barely be dis-
tinguished from that expected in a stable population
with population size N1 (Figure 7A). Interestingly, for
N0/N1 ¼ 0.1, the performance of Msvar was maximized
for intermediate values of Ta, particularly with respect
to the precision of u1 estimates. This might be easily
understood by considering that for ancient events
(Ta ¼ 500) most coalescence events occur while N(t)
is close to the current population size (see, e.g., Figure
7B). This might be further quantified by calculating the
expected number j of ancestral lineages at (scaled) time
t, from which a sample of n genes is descending. This

Figure 7.—Dynamics of population size changes N(t) corresponding to simulated scenarios and expected gene genealogies.
A–C corresponds to population decline and D–F to population expansion (dashed curve). The shaded area in each graph indicates
when the ancestral population size is constant; i.e., N(t) ¼ N1. Above each curve, the expected gene genealogy for 20 sampled
lineages is represented. Expected gene genealogies were obtained by averaging coalescence times over 500,000 simulations of each
demographic scenario. The simulations were based on a generation-by-generation coalescent algorithm developed by the authors.
Note that some genealogies are incomplete (A and C), some lineages having not coalesced 800 generations from present.
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number has a known distribution in a constant-size pop-
ulation (Tavaré 1984), and Leblois and Slatkin
(2007) extended Tavaré’s (1984) formula in the case
of an exponentially growing or declining population.
Using their Equation 2 that gives an expression for
the probability Pr( j jn) that a sample of n genes has
j ancestors Ta generations ago, we may compute the
expected number m of lineages at the time of the pop-
ulation size change as

m5
Xn
j51

j Prð j j nÞ5  
Xn
j51

j
Xn
i5j

ð2i21Þð21Þi2j jði21Þn½i�
j !ði2 jÞ!nðiÞ

e 2iði21Þt=2;

(1)

where a(i) [ a(a1 1) . . . (a1 i2 1), a[i] [ a(a2 1) . . .
(a 2 i 1 1), and t 5

Ð Ta

0 ðdt 9  =  2N ðt 9ÞÞ 5 ðð12N0=N1Þ=
  N0   LogðN1=N0ÞÞTa. For a declining population with
Ta ¼ 500 and N0/N1 ¼ 0.1, we get m ¼ 1.43, which
confirms that most coalescence events are expected to
occur in the current population with this set of parame-
ter values.

For moderate to severe contractions (N0/N1 # 0.1),
both the bias and the 90% HPD range of u0 decreased
with increasing Ta. Using Equation 1, we found that the
expected number m of lineages at the time of the event
varies between 48.49 and 2.20 for Ta varying from 10 to
500 and for N0/N1 ¼ 0.01. This indicates that more
coalescence events are expected to occur in the declin-
ing population when the event is older (see also Figure
7C). In contrast, u1 was overall precisely estimated (see
Figure 4 and Figure S3). This is so because, for the
scenarios considered here, a large part of the genealogy
depends upon the ancestral history, with several line-
ages coalescing in the ancestral population (see, e.g.,
Figure 7, B and C) at a rate that depends upon u1.
Had we considered older events (Ta . 500), though,
thereby decreasing the number of lineages in the an-
cestral population, it is likely that the precision of u1
estimates would have declined.

In summary, most scenarios of population decline
result in gene genealogies with large times to the most
recent common ancestor (TMRCAs). With the set of
model parameters considered here, since a large part of
gene genealogies depends upon u1, this latter parame-
ter is generally precisely and accurately estimated. Con-
trastingly, u0 can be precisely and accurately estimated
only if the demographic event is severe and ancient. If
the change in population size is too recent, provided
that it is not too pronounced, u0 estimates tend to con-
verge to the true value of u1, and no change of popu-
lation size is detected. If the difference in population
size is weak, then the difference in coalescence rates
before and after the event is not sufficient for Msvar
to detect a population size change and to provide pre-
cise estimates of u0 and u1.

Scenarios of population expansion: Msvar was also very
efficient for detecting expansions. Nevertheless, the
estimates of the scaled current population size u0 were
more severely biased and less precise, compared to sce-
narios of population decline, for the same relative se-
verity of the event. This may be explained by the fact
that expanding populations result in young genealogies
with short TMRCAs (compare Figure 7, A–C, to 7, D–F)
and hence rare mutation events. We found that the
absolute value of the bias increased with N0. We further
found that both the 90% HPD range and the absolute
value of the bias of u0 decreased with increasing Ta

(Figure 4 and Figure S4). Using Equation 1, we found
that the expected number m of lineages at the time of
the event varies between 48.49 and 2.20 for Ta varying
from 10 to 500 and for N0/N1 ¼ 100. This indicates that
the number of coalescence events in the expanding
population is expected to increase as Ta increases (see
also Figure 7F). More generally, the likelihood surface
for expanding populations is complex (Beaumont
1999). In particular, as the genealogies become more
star shaped, the joint posterior distribution of u0 and t f
reduces to a ridge along a line log10(2mTa) ¼ k inde-
pendent of u0 (Figure 4b in Beaumont 1999), which
suggests that Msvar provides information on 2mTa,
rather than on u0 in expanding populations. It is
worth noting that Wakeley et al. (2001) found similar
results in inferring demographic history from single-
nucleotide polymorphims (see a comparison in
Beaumont 2004).

Estimates of u1 had a low bias but a large 90% HPD
range (Figure 4). Although the marginal posterior dis-
tributions of u1 were generally peaked, they were flat
tailed on the left. This is so, because large ancestral
population sizes are not compatible with the low poly-
morphism observed in the data. Instead, a large range
of small values of u1 may be equally likely, provided the
genealogy is star shaped.

Influence of the underlying demographic model:
Athough Msvar equally detected population declines
and expansions, inferences of the demographic param-
eters were in general more accurate for declines than
for expansions. In addition to the above argument from
coalescent theory, the exponential model assumed for
population size change may partly explain this pattern.
For declines, the size of the declining population N(t)
decreases sharply at Ta and converges rapidly to N0

(Figure 7, A–C). Therefore, most coalescence events
occurring in the declining population take place while
N(t) is close to N0. For expansions, instead, the size of
the expanding population N(t) increases smoothly at Ta

before it converges rapidly to N0 (Figure 7, D–F).
Therefore, a large proportion of the coalescence events
that occur in the growing population take place while N
(t) is close to N1 (compare, e.g., Figure 7C to 7F). This
can be expressed more formally by considering the har-
monic mean of population sizes, which provides the
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coalescent rate during the change in population size
(Hein et al. 2005). For, say, Ta ¼ 500, the harmonic
mean of an exponentially declining population with
N0 ¼ 100 and N1 ¼ 10,000 is 464, which is strictly equal
to the harmonic mean of an exponentially growing pop-
ulation with N0 ¼ 10,000 and N1 ¼ 100. Hence, the
harmonic mean of a declining population is closer to
its current size (N0) than its ancestral size (N1), while
the reverse is true for expanding populations. There-
fore, given the exponential model of population
growth, one might expect poor statistical properties of
u0 estimates in expanding populations, compared to
declining populations.

Robustness of Msvar to the misspecification of the
mutation model: Most importantly, our results suggest
that Msvar is robust to moderate departures from a strict
SMM, e.g., a GSM with p # 0.22, typical of those ob-
served in the literature (see Figure 6 and Figure S6).
However, severe departures from a strict SMM (here,
a GSM with p ¼ 0.74) led Msvar to detect a signal of
population decline with strong support (BF $ 10), even
in expanding populations (Figure 6 and Figure S6).
This is not surprising since it has been recognized that
violation of the assumptions of the SMM might induce
severe bias in the inference of demographic history
(Gonser et al. 2000). Indeed, mutations that arise un-
der a strong GSM involve large changes in allele length,
which produce some gaps in the distribution of allele
types. The large resulting variance of allele range Va is
reminiscent of that observed with population decline
(Storz and Beaumont 2002), even in expanding pop-
ulations (compare Table 1 to Table S3).

Insights from empirical studies: The better perfor-
mance of Msvar compared to the M-ratio test and Bot-
tleneck also emerged from the empirical studies that
inferred past demographic changes from microsatellite
data using Msvar and at least one of the M-ratio or
Bottleneck methods (Table S1). We found indeed that
Msvar detected a population decline whenever one of
the moment-based methods provided a significant test.
By contrast, a large number of population declines that
were not detected with any of the moment-based meth-
ods were detected with Msvar. Unfortunately, the scar-
city of expansion events detected in the literature
(Table S1) prevented any empirical comparison of
Msvar and Bottleneck for growing populations. Impor-
tantly, the average genetic diversity measured from our
simulated data sets was not substantially different from
that observed in empirical studies (compare Table 1 to
Table S1).

Because of the large heterogeneity of the published
results, we did not attempt to analyze the quality of
Msvar estimates in empirical studies. Some studies used
Msvar 0.4 (Beaumont 1999), hence providing estimates
for scaled parameters, and some studies used Msvar 1.3
(Storz and Beaumont 2002), hence providing esti-
mates for unscaled parameters. Only a handful of stud-

ies used both methods, and few provided estimates of
the scaled parameters using Msvar 1.3, as in the present
study. Finally, credibility intervals were often not re-
ported or calculated using different methods, which
hampered any comparison among studies.
Recommendation guidelines and conclusions: Our

simulation tests as well as an exhaustive survey of the
literature clearly demonstrate that Msvar outperforms
both the M-ratio test and Bottleneck for detecting pop-
ulation declines. Our study further shows that Msvar
is also very efficient to detect population expansions
and outperforms Bottleneck in that respect. However, to
our knowledge, Msvar has only scarcely been applied on
presumably expanding populations (see, e.g., Hufbauer

et al. 2004; Bonhomme et al. 2008; Wirth et al. 2008).
Hence, we confidently recommend the use of Msvar
for detecting past population size variation, even if this
method is computationally demanding.
Most importantly, in contrast to the M-ratio test and

Bottleneck, Msvar provides estimates of the parameters
that characterize the population demographic history
and the mutational model. Using Msvar 1.3 (Storz
and Beaumont 2002), we have shown that the scaled
parameters are more precisely estimated than the nat-
ural parameters. Although the latter are easier to inter-
pret, our results clearly advocate drawing conclusions
from inferences of u0, u1, and t f. These parameters were
precisely estimated for population declines, provided
that the change in population size was neither too re-
cent nor too weak, given the scenarios considered in
our study. For expansions instead, both unscaled and
scaled parameters were poorly estimated, although the
method was efficient for detecting increase in popu-
lation size. Hence, our results suggest that Msvar esti-
mates in presumably expanding populations should be
taken cautiously. We did not compare the performance
of Msvar 0.4 (Beaumont 1999), which provides esti-
mates for scaled parameters, to that of Msvar 1.3 (Storz
and Beaumont 2002), which provides estimates for
unscaled parameters, since the two versions differ by
a number of other aspects. Msvar 0.4 assumes a basic
(nonhierarchical) model, where the parameters are not
allowed to vary among loci. The parameterization of
Msvar 1.3 by means of a hierarchical model allows for
some variation of the parameters among loci, which
may provide a means of identifying aberrant loci. How-
ever, with broad priors on interlocus variation of the
model parameters (V), Msvar 1.3 does not fully “borrow
strength” from the different loci, e.g., by simply pooling
information (multiplying the likelihoods) across loci
(Beaumont and Rannala 2004). This generally results
in broader posterior distributions in the hierarchical
Msvar 1.3 model, compared to the basic Msvar 0.4
model. Hence, although our results suggest that the
use of scaled parameters should be preferred, further
analyses are required to compare the performances of
Msvar 0.4 and 1.3.
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Finally, we recommend that inferences about pop-
ulation demographic change with Msvar should be
interpreted cautiously in light of potential departures
from the model assumptions. First, Msvar assumes
that microsatellites evolve according to a strict SMM.
Although a moderate departure from this mutation
model, as classically measured with observations of
spontaneous mutations (Ellegren 2000, 2004), does
not seem to undermine Msvar performance (see Figure
6 and Figure S6), loci that evolve under a strong GSM
may invalidate the approach by detecting false signals of
population decline whatever the true demographic his-
tory. However, the hierarchical model implemented in
Msvar 1.3 allows for variations in mutation and demo-
graphic parameters across loci and may thus limit the
potential biases due to misspecifications of the muta-
tion model. Indeed, Storz et al. (2002) argue that loci
that strongly depart from the strict SMM shall be given
less weight, thereby minimizing their impact on the in-
ference made. Second, Msvar assumes that populations
are isolated. Real populations, however, are in general
connected by gene flow. It is now acknowledged that
population structure and/or isolation by distance may
result in incorrect inference of population demo-
graphic history (Pope et al. 2000; Leblois et al. 2006;
Nielsen and Beaumont 2009; Chikhi et al. 2010;
Peter et al. 2010). Finally, further work is needed to
evaluate how Msvar performs when the demography is
more complex, e.g., with successions of population de-
clines and expansions.
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Tavaré, S., 1984 Line-of-descent and genealogical processes, and
their applications in population genetics models. Theor. Popul.
Biol. 26: 119–165.
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ancient dates were also supported. In order to test whether the method could retrieve information on the mutation rate from 
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Supplementary Figure S2
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Supplementary Figure S3
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Supplementary Figure S4
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Supplementary Figure S6
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TABLE S1 

Exhaustive Review of the Studies that used MSVAR for Inference of Population Size Change 

     MSVAR    

Species s n No. of loci He Vers. Res. M-ratio Bottleneck Reference 

Mexican 

goodeid fish 

2 
20 – 31 5 – 7 - v. 0.4  - - 

BAILEY et al. (2007) 

          
Himalayan 

brown bear 

1 
54 6 - v. 0.4  - - 

BELLEMAIN et al. (2007) 

          
Ground beetle 2 54 – 56 9 - v. 0.4  - - KELLER et al. (2005) 

          
European 

grayling 

14 
13 – 48 8 0.62 – 0.69 v. 0.4  - - 

MELDGAARD et al. (2003) 

          
 4 28 – 52 17 - v. 0.4  - - KOSKINEN et al. (2002a) 

          
Arctic grayling 1 71 - - v. 0.4  - - KOSKINEN et al. (2002b) 

          
 6 80 – 214 7 - v. 0.4  - - STAMFORD and TAYLOR (2005) 

          
Northern pike 16 15 – 50 5 - v. 0.4  - - JACOBSEN et al. (2005) 

 2 26 5 -      

          
Japanese eel 1 89 6 - v. 0.4  - - TSENG et al. (2003) 

          
American and 

European eels 

4 
100 7 - v. 0.4  - - 

WIRTH and BERNATCHEZ (2003) 

          
Fishtail palm 1 143 9 0.67 v. 1.3  - - CIBRIAN-JARAMILLO et al. (2009) 

          
Lake Victoria 

Cichlid fishes 

3 
- 12 - v. 0.4  - - 

ELMER et al. (2009) 

         
Cape Fear 

Shiner 

2 
26 – 29 18 - v. 1.3  - - 

SAILLANT et al. (2004) 

          
Gray snapper 3 50 13 - v. 1.3  - - GOLD et al. (2009) 

          
Lane snapper 6 50 13 - v. 1.3  - - KARLSSON et al. (2009) 

          

Drosophila sp. 12 22 – 30 47 0.10 – 0.51 v. 0.4  - - HARR AND SCHLÖTTERER (2004) 

          

Caenorhabditis 

elegans 

1 
- 9 - v. 0.4  - - 

SIVASUNDAR AND HEY (2003) 

          

Red deer 3 31 – 33 11 0.37 – 0.50 v. 1.3  - - NIELSEN ET AL. (2008) 

          

Mycobacterium 

complex 

8 
- 24 - v. 0.4  - - 

WIRTH ET AL. (2008) 
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Sea otter 1 40 24 - v. 1.3  - a - a AGUILAR ET AL. (2008) 

          

Bornean orang-

utan 

2 
26 – 27 14 - both  - - a 

GOOSSENS ET AL.  (2006) 

          

Tanoak 1 447 9 - v. 0.4  - - a NETTEL ET AL. (2009) 

          

Rattlesnake 5 18 – 54 9 0.61 – 0.73 v. 0.4   - HOLYCROSS ET AL. (2007) 

          

Parasitoid wasp  50 5 - v. 1.3  - - a HUFBAUER ET AL. (2004) 

  48 5 -   - - a  

          

Cynomolgus 

macaque 

1 
81 16 0.66 v. 0.4 = -  

BONHOMME ET AL. (2008) 

          

Madagascar 

fish-eagle 

1 
44 22 0.19 v. 0.4  - = 

JOHNSON ET AL. (2009) 

          

African 

elephant 

5 
80 – 319 20 - v. 1.3  -  

OKELLO ET AL. (2008) 

 1 79 20 0.74   - =  

          

Giant panda 2 29 – 32 9 0.49 – 0.56 v. 1.3  - = ZHANG ET AL. (2007) 

 1 40 9 0.61   -   

          

Eurasian otter 2 65 – 132 10 0.53 – 0.59 v. 1.3  - = HAJKOVA ET AL. (2007) 

          

 2 29 – 58 11 - v. 0.4  - = PERTOLDI ET AL. (2001) 

 

 

 
       

 

Ethiopian walia 

ibex 

1 
24 5 0.35 v. 1.3  - = 

GEBREMEDHIN ET AL. (2009) 

          

Persian wild ass 1 24 12 0.54 v. 1.3  - = NIELSEN ET AL. (2007) 

         
Rock ptarmigan 3 17 – 20 6 0.45 – 0.75 v. 1.3  - = PRUETT et al. (2010) 

          
Cyprinid fish 4 30 – 48 6 0.23 – 0.35 v. 1.3  - = SOUSA et al. (2008) 

 2 21 – 30 6 0.24 – 0.26  = - =  

          
 6 12 – 50 6 0.22 – 0.45 v. 1.3  - = SOUSA et al. (2010) 

          
Golden-brown 

mouse lemur 

8 
15 – 59 8 0.54 – 0.65 

both  
- = 

OLIVIERI et al. (2008) 

         
Bongolava 1 27 8 0.57 both  - =  
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mouse lemur 

         
Danfoss’ mouse 

lemur 

1 
30 8 0.71 

both  
- = 

 

         
Milne-

Edwards’s 

sportive lemur 

2 

10 14 0.53 – 0.55 both  - = 

CRAUL et al. (2009) 

          
Golden eagle 1 172 13 0.48 both  - = BOURKE et al.(2010) 

          
Yunnan sub-

nosed monkey 

1 
135 10 0.70 v. 1.3 = - = 

LIU et al. (2009) 

          

Drosophila 1 13 17 0.80 v. 0.4  -  DIERINGER ET AL. (2005) 

 4 10 – 30 17 0.47 – 0.79   - =  

 10 8 – 30 17 0.48 – 0.79   -   

          

 1 20 10 - v. 0.4  - = FRYDENBERG ET AL. (2002) 

 1 20 10 -   -   

 1 20 10 -   - =  

 1 20 10 -   -   

 1 20 10 -  = - =  

          

Reed warblers 1 40 9 - v. 1.3  = = PROCHAZKA ET AL. (2008) 

          

Tiger 1 57 30 - both    MONDOL ET AL. (2009) 

         
European otter 1 6 11 0.77 v. 0.4 = = = RANDI et al. (2003) 

 7 3 – 29 11 0.45 – 0.74   = =  

          
European 

grayling 

30 
17 – 112  13 – 14 0.24 – 0.64  v. 1.3   = 

SWATDIPONG et al. (2010) 

 1 35  13 -  v. 1.3     

          
Eastern red-

blacked 

salamander 

2 

25 – 28 6 0.41 – 0.47 

v. 0.4 

  = 

JORDAN et al. (2009) 

          
European wolf 2 30 – 103 18 - v. 0.4   = LUCCHINI et al. (2004) 

 3 34 – 115 18 -   = =  

          
African buffalo 2 33 – 54 17 0.81 – 0.82 v. 1.3   = HELLER et al. (2008) 

          
Howler 

monkeys 

1 
50 10 0.58 v. 1.3  =  

MILTON et al. (2009) 

s, number of samples; n, number of individuals per sample; No. of loci, number of microsatellite loci used; He , expected 

heterozygosity; Vers., version of MSVAR used in the study (v. 0.4, v. 1.3 or both); Res., MSVAR results, as interpreted by the 

authors; , evidence for population decline; =, no evidence of population size change; , evidence of population expansion; -
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, information not available; all studies using the M-ratio test calculated the critical value Mc (see main text), except that of 

MILTON et al. (2009), which considered Mc = 0.68; a, data not available, since the M-ratio test and/or BOTTLENECK were not 

applied on the same set of populations as MSVAR. When multiple mutation models have been considered for the M-ratio test 

and/or BOTTLENECK, only the results assuming a SMM are reported. 
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TABLE S3 

Genetic Diversity in the Second Set of Simulated Data 

  Declining population  Stable population  Expanding population 

  He Na Ar Va  He Na Ar Va  He Na Ar Va 

SMM         

p = 0.00 
 

0.56      

(0.04) 

4.2  

(0.4) 

6.9  

(1.3) 

13.5    

(5.6) 
 

0.54     

(0.07) 

3.8    

(0.3) 

3.0    

(0.2) 

2.0      

(0.3) 
 

0.52     

(0.04) 

4.3    

(0.4) 

3.3    

(0.4) 

1.98    

(0.30) 

GSM          

p = 0.22 
 

0.51      

(0.04) 

3.9 

(0.2) 

9.5   

(1.6) 

30.9 

(16.2) 
 

0.57     

(0.08) 

4.8    

(0.7) 

4.8    

(1.4) 

4.4      

(2.3) 
 

0.52     

(0.04) 

5.7    

(0.1) 

5.3    

(0.4) 

4.2        

(0.6) 

GSM          

p = 0.74 
 

0.56      

(0.08) 

4.44 

(0.59) 

32.9 

(14.6) 

323.0 

(211.8) 
 

0.62     

(0.03) 

6.7    

(0.7) 

16.9 

(1.5) 

43.5    

(6.2) 
 

0.62     

(0.06) 

12.1 

(0.8) 

20.5 

(1.6) 

38.2     

(4.9) 

He, expected heterozygosity; Na, number of alleles; Ar, allele size range; Va, variance of allele size range; estimates of genetic diversity 

are averaged over the five simulated datasets for each set of parameters; standard deviations are indicated below the mean, into 

parentheses. Data were simulated for a declining population (N0 = 100; N1 = 10,000; Ta = 500), a stable population (N0 = N1 = 464; Ta 

= 500), and an expanding population (N0 = 10,000; N1 = 100; Ta = 500), under three mutation models: a strict stepwise mutation 

model (SMM), a moderate GSM with a frequency of multi-step changes set to p = 0.22, and a strong GSM with a frequency of multi-

step changes set to p = 0.74. 
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