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Abstract

An importance sampling algorithm for computing the likelihood of a sample of genes at loci under a stepwise mutation model in a

subdivided population is developed. This allows maximum likelihood estimation of migration rates between subpopulations. The

time to the most recent common ancestor of the sample can also be computed. The technique is illustrated by an analysis of a data

set of Australian red fox populations.
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1. Introduction

Recently there has been much research into computa-
tion methods of ancestral inference from samples of
genes conditional on their observed type configuration
using importance sampling (IS), MCMC and Bayesian
techniques. In the simplest stepwise mutation model
inference involves finding a maximum likelihood esti-
mate of y, the mutation rate. Wilson and Balding (1998)
use a Bayesian MCMC scheme implemented in Micsat
for microsatellite data, Beerli and Felsenstein (1999) use
an MCMC scheme implemented in Migrate to
estimate migration rates from data which could have a
stepwise mutation mechanism. Nielsen (1997) uses an IS
algorithm based on an algorithm in Griffiths and Tavaré
(1994). Stephens and Donnelly (2000) develop a
sequential IS technique, improving the algorithm of
Griffiths and Tavaré (1994) to find the likelihood of
e front matter r 2005 Elsevier Inc. All rights reserved.
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samples of genes under a general mutation model which
includes the stepwise model. Stephens (2001) gives an
algorithm based on IS to simulate genealogies of
selected alleles in a population of variable size. The
paper also describes the use of IS methods in population
genetics in a more general framework. Chen et al. (2005)
improve sequential IS by running multiple processes and
resampling at sequential steps in the algorithm. A
different approach based on F-statistics and analysis of
variance analogues is reviewed in Excoffier (2001) and
Rousset (2001). De Iorio and Griffiths (2004a,b) develop
a technique to construct sequential IS proposal dis-
tributions on coalescent histories in population genetic
models based on the diffusion process generator that
describes the distribution of population gene frequen-
cies. The technique extends proposal distributions of
Stephens and Donnelly (2000) to a wider class of
models, with a focus on subdivided population models
of the island model type. Apart from likelihood
calculations, ancestral inference questions involving
time, such as the time to the most recent common
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ancestor (TMRCA) of the genes in a data set, can be
answered by including the time between events in the
underlying coalescent process.
The ancestry of a sample of n genes is described by

a coalescent tree (Kingman, 1982), where pairs of
ancestral lines coalesce at unit rate forming a tree back
in time to the ancestor of the sample genes. Mutations
occur at rate y=2 along the edges of the coalescent tree
according to a Poisson process.
An accessible introduction to the coalescent process is

Nordborg (2001), with subdivided coalescent studies by
Notohara (1990) and Herbots (1997). Two papers on
ancestral inference are Griffiths (2001) and Stephens
(2001). This current paper derives a detailed algorithm
from the techniques in De Iorio and Griffiths (2004b)
for likelihood calculations under a stepwise mutation
model in a subdivided population.
In the stepwise mutation model the allele type space is the

set of integers f. . .� 2;�1; 0; 1; . . .g. Transitions of allele
type when a mutation occurs are made according to a
random walk from state j to a state j þ Z, where Z is an
integer-valued random variable. In the simplest case studied
by Ohta and Kimura (1973), Moran (1975), Moran (1976),
Z ¼ �1 with probability 1=2. There is a distribution of the
configuration of types in a sample with positions measured
relative to the most recent common ancestor of the sample,
which could be taken without loss of generality to be 0. The
distribution is shift invariant, only depending on the relative
positions of the types on a line.
In this paper an IS algorithm for computing the

likelihood of a sample of genes at loci under a stepwise
mutation model in a subdivided population is devel-
oped. This allows maximum likelihood estimation of
migration rates between subpopulations. The algorithm
and program code used were thoroughly checked.
Intermediate calculations also agree with exact analytic
results for probabilities of identity of type under a finite
island model. See Nagylaki (1983) for the finite island
model, and Rousset (1996) for an adaption to different
mutation models.
The precision of migration and mutation rate max-

imum likelihood estimates is checked by an analysis of
multilocus simulated data from a two population model.
To illustrate the algorithm with a real data set, an

analysis is performed on data from two Australian red
fox (Vulpes vulpes) populations.
2. Coalescent histories and importance sampling

Let E be the set of possible types of a gene. Denote the
sample configuration of the numbers of different types
as n ¼ ðnj ; j 2 EÞ, and pðnÞ the probability of obtaining a
sample n. ej will denote the jth unit vector. For j 2 E, let
pðj j nÞ be the probability that an additional gene chosen
from the population is of type j, given that we have an
observed configuration n. These conditional distribu-
tions are important in the sampling distribution and
coalescent history process. If j1; j2; . . . ; jn are the types of
genes sequentially sampled such that there are nj ; j 2 E

genes of type j in the sample, then

pðnÞ ¼
n!Q

j2E nj!

Yn

l¼1

pðjl j ej1
þ � � � þ ejl�1

Þ.

The distribution pðnÞ is invariant under sequential
sampling order.
A coalescent history fHk; k ¼ 0;�1; . . . ;�mg is de-

fined as the set of ancestral configurations at the
embedded events in the Markov process where coales-
cence, mutation or other events take place. H0 denotes
the current state, and H�m the state when a singleton
ancestor is reached. The Markov nature of the process
implies that

pðHkÞ ¼
X

fHk�1g

pðHk j Hk�1ÞpðHk�1Þ. (2.1)

pðHkÞ and fpðHk�1Þg are unknown, whereas the prob-
abilities pðHk j Hk�1Þ are easily derived from the
distribution of the coalescent tree. A coalescent history
is illustrated in Fig. 1. In (2.1) history probabilities are
evaluated in the direction from the ancestor type to the
sample data configuration. However a reverse history
process from the sample data to the ancestor is required
to efficiently evaluate the sample likelihood. A sequen-
tial importance sampling representation is based on an
approximation bpðHk�1 j HkÞ to the unknown reverse
probabilities pðHk�1 j HkÞ. In one step

pðHkÞ ¼
X

fHk�1g

pðHk j Hk�1Þ

p̂ðHk�1 j HkÞ
pðHk�1Þp̂ðHk�1 j HkÞ

¼ Ep̂

X
fHk�1g

pðHk j Hk�1Þ

p̂ðHk�1 j HkÞ
j Hk

� �
. ð2:2Þ

The full sequential IS representation from continuing
(2.2) over states H0;H�1; . . . ;H�m is

pðH0Þ ¼ Ep̂

pðH0 j H�1Þ

p̂ðH�1 j H0Þ
� � �

pðH�mþ1 j H�mÞ

p̂ðH�m j H�mþ1Þ

�
�pðH�mÞ
, ð2:3Þ

where Ep̂ is taken over histories H�1; . . . ;H�m withbpð� j �Þ being the reverse chain transition probabilities.
Probabilities of a history sample path H are evaluated
in forward and reverse directions in the numerator and
denominator of (2.3). The likelihood of the data can be
evaluated by repeated simulation of sample histories in a
reverse direction from the current sample configuration
H0 to H�m under bpð�Þ with transition probabilitiesbpðHk�1 j HkÞ, then averaging the sequential IS weights

pðH0 j H�1ÞbpðH�1 j H0Þ
� � �

pðH�mþ1 j H�mÞbpðH�m j H�mþ1Þ
pðH�mÞ



ARTICLE IN PRESS

Fig. 1. Coalescent tree.
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obtained on each run to obtain an estimate of the
likelihood.
In a panmictic model if a historical configuration is

Hk ¼ n then either Hk�1 ¼ n � ej for some j 2 E

corresponding to coalescence of two type j genes, or
Hk�1 ¼ n þ ei � ej for some i; j 2 E corresponding to
mutation forward in time from i to j chosen with
transition probability matrix P. (See Fig. 1 for an
illustration.) In detail (2.1) becomes

pðnÞ ¼
y

n þ y� 1

X
i;j2E;nj40

ni þ 1� dij

n
Pijpðn � ej þ eiÞ

þ
n � 1

n þ y� 1

X
j2E;nj40

nj � 1

n � 1
pðn � ejÞ. ð2:4Þ

In (2.4) dij ¼ 1 if i ¼ j or dij ¼ 0 otherwise. Griffiths and
Tavaré (1994) derive (2.4) from a coalescent argument
and also by considering a sample from the population
frequencies in a diffusion process model.
It is possible to express the reverse chain probabilities

by using Bayes’ rule as

PðHk�1 j HkÞ ¼

nj � 1

n þ y� 1
�

nj

n
�

1

pðj j n � ejÞ
if Hk�1 ¼ n � ej ;

y
n þ y� 1

�
nj

n
�
pði j n þ ei � ejÞ

pðj j n � ejÞ
if Hk�1 ¼ n þ ei � ej :

8>>><>>>:
ð2:5Þ

IS distributions are found by substituting an approx-
imation bp to obtain bPðHk�1 j HkÞ. pðnÞ can then be
calculated by simulation. Stephens and Donnelly (2000)
construct an IS proposal distribution on coalescent
histories approximating pð� j nÞ, by bpð� j nÞ, the station-
ary distribution in a Markov chain with transition
probability matrix

yP þ n

n þ y
. (2.6)

That is, for j 2 E,

bpðj j nÞ ¼
X
i2E

bpði j nÞ
yPij þ nj

n þ y
. (2.7)

An explicit solution to (2.7) is that

bpðj j nÞ ¼
X
i2E

ni

n

X1
k¼0

rkð1� rÞPðkÞ
ij

¼
X
i2E

ni

n
Qij , ð2:8Þ

where r ¼ y=ðn þ yÞ and the transition matrix
Q ¼ ð1� rÞðI � rPÞ�1. De Iorio and Griffiths
(2004a,b) provide three ways of justifying the approx-
imation bp; from an approximation to the generator of
the diffusion process describing the distribution of the
population gene frequencies; from the recursive equa-
tions for the sampling distribution; and from a
coalescent argument.
A stochastic interpretation of (2.8) is to choose

a type i 2 E gene with probability ni=n, then obtain
a type j 2 E gene from a Geometric ðy=ðn þ yÞÞ
number of mutations according to the transition
matrix P. In a stepwise mutation model where
Pij ¼ 1=2 if ji � jj ¼ 1, or zero otherwise, it is shown
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Table 1

IS proposal distribution and importance weights for a coalescent model with migration

Hk�1 Proposal distribution Importance weight

n � eaj najðnaj � 1Þq
�1
abpðj j a; n � eajÞDðnÞ

na

naj

bpðj j a; n � eajÞ

n � eaj þ eai najyPijbpði j a; n � eajÞbpðj j a; n � eajÞDðnÞ

ðnai þ 1� dijÞ

naj

bpðj j a; n � eajÞbpði j a; n � eajÞ

n � eaj þ ebj najmabbpðj j b; n � eajÞbpðj j a; n � eajÞDðnÞ

ðnbj þ 1Þ

naj

na

ðnb þ 1Þ

bpðj j a; n � eajÞbpðj j b; n � eajÞ
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in this paper that

Qij ¼
1� rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p �
r

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p" #jj�ij

. (2.9)

In a subdivided population model with g subpopula-
tions let S be the subpopulation type space. A gene’s
type is then indexed by S � E, the subpopulation it is in,
and its allele type. Possible transitions back in time to a
sample of genes at a prior history event to a gene type
ða; jÞ are: coalescence of a pair of genes of type ða; jÞ;
mutation forward in time from type ða; iÞ to ða; jÞ with
rate y=2 and transition probability Pij ; and migration
back in time of a type j gene from subpopulation a to b
at rate mab=2. Let ma ¼

P
baa mab, and denote ðqa; a 2

SÞ as relative subpopulation sizes. A Wright–Fisher
model in discrete time gives rise to this model as
subpopulation sizes tend to infinity. Let ðNaÞa2S be the
subpopulation sizes, N ¼

P
a2S Na, qa ¼ Na=N, a 2 S,

and vab; a;b 2 S be the probability that the parent of an
offspring in subpopulation a is from subpopulation b in
the previous generation. The backward migration rates
are defined as mab ¼ 2Nvab, a; b 2 G, aab with the
overall rate ma ¼

P
baa mab. If ðembaÞ are the forward

migration rates then emba ¼ Namab=Nb. The model
considered here is the usual coalescent time scaled
model where time is measured in units of N generations,
and N ! 1 while migration and mutation rates are
kept constant. A careful treatment of the limit is in
Herbots (1997). The analogue of (2.4) for a subdivided
population model, derived in De Iorio and Griffiths
(2004b), is

Xg

a¼1

naðna � 1Þq
�1
a þ

Xg

a¼1

nama þ ny

 !
pðnÞ

¼
Xg

a¼1

X
j2E

naðnaj � 1Þq
�1
a pðn � eajÞ

þ y
Xg

a¼1

X
i;j2E

ðnai þ 1� dijÞPijpðn þ eai � eajÞ

þ
Xg

a¼1

X
j2E

X
baa

mab
na

nb þ 1
ðnbj þ 1Þ

�pðn � eaj þ ebjÞ. ð2:10Þ
Bahlo and Griffiths (2001) obtain a general solution for
pðnÞ when the sample size is n ¼ 2, though the form of
solution is not simple. For ða; jÞ 2 S � E, let pðj j a; nÞ be
the probability that an additional gene taken from
subpopulation a is of type j, given that we have an
observed configuration n ¼ ðnajÞ. The scaling is such thatP

j2E pðj j a; nÞ ¼ 1. The reverse chain probabilities
pðHk�1 j HkÞ can be expressed in terms of pð� j a; nÞ.
The proposal distribution bpðHk�1 j HkÞ and one-step IS
weights, pðHk j Hk�1Þ=bpðHk�1 j HkÞ based on approx-
imate distributions bpð� j a; nÞ, derived in De Iorio and
Griffiths (2004b), are shown in Table 1. The probability
distributions bpð� j a; nÞ are defined by a system of
equations

ðnaq
�1
a þ ma þ yÞbpðj j a; nÞ ¼ najq

�1
a þ y

X
i2E

Pijbpði j a; nÞ
þ
X
baa

mabbpðj j b; nÞ. ð2:11Þ

The overall event rate in subpopulation a is da=2, where
da ¼ naðna � 1Þq

�1
a þ nama þ nay, and the total event

rate is DðnÞ=2 where DðnÞ ¼
Pg

a¼1 da. In practice it is
easiest to choose a gene of type ða; jÞ to change with
probability

najððna � 1Þq
�1
a þ ma þ yÞ

DðnÞ
, (2.12)

then select an associated event from the conditional
proposal distribution found by dividing the proposal
distribution in Table 1 by (2.12).
Here we describe briefly how a coalescent approxima-

tion gives rise to bp. Let Baj be the event that a gene from
subpopulation a of type j is involved in the first event
back in the coalescent history of the process and Y a
random vector describing the configuration of types.
Then

pðBaj \ fY ¼ ngÞ ¼ pðnÞPðBaj j Y ¼ nÞ

¼
naðna � 1Þq

�1
a

DðnÞ

X
j2E

naj � 1

na � 1
pðn � eajÞ

þ
nay

DðnÞ

X
i;j2E

nai þ 1� dij

na

�Pijpðn � eaj þ eaiÞ
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þ
nama

DðnÞ

X
j2E

X
baa

mab

ma
�

nbj þ 1

nb þ 1

�pðn � eaj þ ebjÞ. ð2:13Þ

Exchangeability in the order of sampled genes implies
that

pðj j a; n � eajÞpðn � eajÞ ¼
naj

na
pðnÞ,

pði j a; n � eajÞpðn � eajÞ ¼
nai þ 1� dij

na
pðn � eaj þ eaiÞ,

pðj j b; n � eajÞpðn � eajÞ ¼
nbj þ 1

nb þ 1
pðn � eaj þ ebjÞ. ð2:14Þ

Substituting from (2.14) into (2.13)

pðj j a; n � ejÞPðBaj j Y ¼ nÞDðnÞ=na

¼ ðnaj � 1Þq
�1
a þ y

X
i2E

Pijpði j a; n � ejÞ

þ
X
baa

mabpðj j b; n � ejÞ. ð2:15Þ

The system (2.15) is exact, rather than approximate. To
obtain the approximate system (2.11) assume that

PðBaj j Y ¼ nÞ ¼
naðna � 1Þq

�1
a þ nama þ nay
DðnÞ

�
naj

na
,

the probability of the last history event being in
subpopulation a, times the approximate probability
naj=na. Then substituting in (2.15) and setting n � ej ! n
yields (2.11).
A stochastic interpretation of the distribution bp is

shown in De Iorio and Griffiths (2004b) to be the
following. Let M� ¼ ðmab=maÞ be a transition prob-
ability matrix with diagonal elements zero constructed
from the migration rate matrix M, so that the rows of
M� each add to 1. Denote, for a 2 S,

fa ¼
ma

naq�1
a þ ma

; ra ¼
y

naq�1
a þ ma þ y

,

and the transition probability matrix Pa ¼ ð1� raÞ
ðI � raPÞ

�1. A mechanism for choosing a gene of type
j 2 E from the distribution bpðj j a; nÞ is the following.
Choose a sequence of subpopulations a0; a1; . . . ; at, for
the migration path of a gene, starting with a0 ¼ a and
stopping at step t in subpopulation at, with probability

fa0
fa1

� � �fat�1
ð1� fat Þ � m�

a0a1
m�

a1a2
� � �m�

at�1at
.

fa can be interpreted as the probability of moving from
subpopulation a to another subpopulation, while 1� fa
is the probability of stopping in subpopulation a. Next
choose a type at random from subpopulation at, such
that the probability of choosing a gene of type i is
nati=nat . Mutate back along the migration path to a0, so
that a sample path probability of a sequence of
mutations which start with type iat ¼ i and end with a
type i0 ¼ j gene is

natiat

nat
Pat;itit�1 � � �Pa1;i2i1

Pa0;i1i0
.

An interpretation of Pa is that there are a geometrically
distributed number of mutations with parameter ra, the
probability of a mutation, and a transition matrix P for
type changes, in each subpopulation a 2 fat; . . . ; a0g
visited in the migration path. The stochastic structure
described above can be seen by rewriting (2.11) as

bpðj j a; nÞ ¼ ð1� raÞð1� faÞ
naj

na
þ ð1� raÞfa

�
X
baa

m�
abbpðj j b; nÞ

þ ra
X
i2E

Pijbpði j a; nÞ. ð2:16Þ

In the simple stepwise mutation model Pa ¼ Q, in (2.8)
with parameter r ¼ ra.
3. Stepwise mutation model

The population genetics model considered in this
paper is a subdivided population with stepwise
mutations on the line. The gene type space is then
E ¼ f. . . ;�2;�1; 0; 1; 2; . . .g with a mutation transition
matrix of the form

Pij ¼ uj�i; i; j ¼ 0;�1;�2; . . . .

A sample of ðna; a 2 SÞ genes is taken from the
subpopulations. n ¼ ðnaj; ða; jÞ 2 S � EÞ is the collection
of the number of genes in subpopulation a of type j.
Backwards migration rates from subpopulation a to b
are denoted by ðmab; a;b 2 SÞ. pðnÞ will denote the
probability of a configuration n under the model.
Fourier transform methods will be used in the

following sections to solve recursive equations obtained.
The Fourier transform of an absolutely convergent
series faj; j ¼ 0;�1;�2 . . .g will be denoted by

anðxÞ ¼
X1

j¼�1

eixjaj,

where i ¼
ffiffiffiffiffiffiffi
�1

p
.

3.1. A sample of two genes

It is possible to obtain a formula for pðnÞ when n ¼ 2
by using Fourier transform methods. We provide details
of the simplest case with two subpopulations labelled a
and b. Let pða;b;DÞ be the probability that two genes
chosen from subpopulations a and b are separated by a
signed distance D ¼ 0;�1;�2; . . . . pða; a;DÞ is inter-
preted as the probability that the signed distance
of the second gene from the first gene chosen from
subpopulation a is D. If nab is a sample of two genes from
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subpopulations a and b with respective positions i and j

such that i � j ¼ D, then for aab, pða;b; dÞ ¼ pðnabÞ,
while for a ¼ b, pða; a;DÞ ¼ pðnaaÞ=ð2� dD;0Þ, where
dD;0 ¼ 1 if D ¼ 0 or dD;0 ¼ 0 if Da0. The scaling is such
that

P1

D¼�1 pða;b; dÞ ¼ 1 for a and b equal or unequal.
Without loss of generality choosing j ¼ 0, substituting in
(2.10), (or a derivation from first principles for a sample
of two genes) and using translation invariance gives the
following equations for aab,

ðma þ mb þ 2yÞpða; b;DÞ

¼ 2y
X1

k¼�1

pða;b;D� kÞuk

þ mapðb; b;DÞ þ mbpða; a;DÞ,

ðq�1
a þ ma þ yÞpða; a;DÞ

¼ q�1
a dD;0 þ y

X1
k¼�1

pða; a;D� kÞuk

þ mapða;b;DÞ. ð3:1Þ

Denote pn
abðxÞ as the Fourier transform of pða; b; dÞ, and

yn ¼ yð1� unðxÞÞ. Then from (3.1), omitting the argu-
ment x for ease of notation,

ðma þ mb þ 2y
n
Þpn

ab ¼ map
n

bb þ mbpn

aa,

ðq�1
a þ ma þ ynÞpn

aa ¼ q�1
a þ map

n

ab,

ðq�1
b þ mb þ ynÞpn

bb ¼ q�1
b þ mbpn

ab.

The solution of (3.2) is

pn

ab ¼
A

B
, (3.2)

where

A ¼ q�1
b maðq

�1
a þ ma þ ynÞ þ q�1

a mbðq
�1
b þ mb þ ynÞ,

B ¼ ðma þ mb þ 2y
n
Þðq�1

a þ ma þ ynÞðq�1
b þ mb þ ynÞ

� mambðq
�1
a þ ma þ q�1

b þ mb þ 2y
n
Þ.

pn
a;a and pn

b;b can then be found from the second equation
of (3.2). Probabilities are found by inversion of the
corresponding transform, with

pða;b; dÞ ¼
1

2p

Z p

�p
e�idxpn

abðxÞ dx. (3.3)

The general case of more than two subpopulations is
similar, with a system of equations to solve for aab,
a;b ¼ 1; . . . ; g of

ðma þ mb þ 2y
n
Þpn

ab ¼
X
gaa

ma;gp
n

gb þ
X
gab

mb;gp
n

ga,

ðq�1
a þ ma þ ynÞpn

aa ¼ q�1
a þ

X
gaa

magp
n

ag. ð3:4Þ

In a symmetric one-step mutation model where
u�1 ¼ uþ1 ¼ 1=2, uj ¼ 0 if ja� 1, unðxÞ ¼ cosðxÞ, and
yn ¼ yð1� cosðxÞÞ.
3.2. Importance sampling distribution p

3.2.1. Single population

The system of equations (2.7) in a stepwise mutation
model becomes

bpðj j nÞ ¼
nj

n þ y
þ

y
n þ y

X1
i¼�1

uj�ibpði j nÞ. (3.5)

The Fourier transform equation corresponding to
(3.5) is

bpn
ðx j nÞ ¼

nnðxÞ
n þ y

þ
y

n þ y
unðxÞbpn

ðx j nÞ. (3.6)

Thus

bpn
ðx j nÞ ¼

nnðxÞ
n þ yð1� unðxÞÞ

. (3.7)

Inverting the transform

bpðk j nÞ ¼
1

2p

Z p

�p

e�kxi � nnðxÞ
n þ yð1� unðxÞÞ

dx. (3.8)

In a symmetric one-step mutation model there is an
explicit solution

bpðk j nÞ ¼
1

2p

Z p

�p

e�kxi � nnðxÞ
n þ yð1� cosðxÞÞ

dx

¼
1

2p

Z p

�p

P1

j¼�1 nj cosððj � kÞxÞ

n þ yð1� cosðxÞÞ
dx

¼
X1

j¼�1

nj

n þ y
cj�kðrÞ

¼
nk

n þ y
c0ðrÞ þ

X1
‘¼1

nkþ‘ þ nk�‘

n þ y
c‘ðrÞ, ð3:9Þ

where r ¼ y=ðn þ yÞ, and

c‘ðrÞ ¼
1

2p

Z p

�p

cosð‘xÞ
1� r cosðxÞ

dx

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p �
r

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p" #j‘j
. ð3:10Þ

In the derivation of (3.9) if jak,

1

2p

Z p

�p

P1

j¼�1 nj sinððj � kÞxÞ

n þ yð1� cosðxÞÞ
dx ¼ 0

because the integrand is an odd function of x about zero.

3.2.2. Subdivided populations

Taking the Fourier transform of (2.11) produces a
system of equations for a 2 S of

ðn�1
a q�1

a þ ma þ yð1� unðxÞÞÞbpn
ðx j a; nÞ

¼ nn

aq�1
a þ

X
baa

mabbpn
ðx j b; nÞ. ð3:11Þ

Let AðxÞ ¼ Diag naq�1
a þ ma þ yð1� unðxÞÞ

� �
� M, bðxÞ

¼ ðnn
aq�1

a Þ and bpn
ðx j nÞ ¼ ðbpðx j a; nÞÞ. The system (3.11)
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can be written in the matrix formbpðx j nÞ ¼ AðxÞ�1bðxÞ

with a solution of

bpðj j a; nÞ ¼ 1

2p

Z p

�p
e�jxiAðxÞ�1bðxÞ dx. (3.12)

An approximate solution to these equations can be
found by simple numerical integration on equally spaced
points in ½�p; p
.

3.2.3. Two subpopulations

The general stochastic representation in Section 2
gives an expression in a model with two subpopulations
labelled a and b of

bpðj j a; nÞ ¼ X1
k¼�1

X1
va¼1

X1
vb¼0

nak

na
ð1� faÞ þ

nbk

nb
ð1� fbÞ

� �
�fva�1

a f
vb
b ½Pva

a P
vb
b 
kj . ð3:13Þ

The probability of va; vb visits to a;b starting at a and
ending at a is fva�1

a ð1� faÞf
vb
b , and similarly

fva�1
a f

vb
b ð1� fbÞ, for ending in b. The transition

matrices Pa;Pb commute, so the term containing them
in (3.13) is well defined. Denote the mean quantities

bmða; nÞ ¼ X1
j¼�1

jbpðj j a; nÞ; n̄a ¼
X1

j¼�1

j
naj

na
,

bmðb; nÞ ¼ X1
j¼�1

jbpðj j b; nÞ; n̄b ¼
X1

j¼�1

j
nbj

nb
.

If the mean mutation distance
P1

j¼�1 jPij is always zero
from any position i then by considering the first step in
the migration walkbmða; nÞ ¼ n̄að1� faÞ þ fabmðb; nÞ,bmðb; nÞ ¼ n̄bð1� fbÞ þ fbbmða; nÞ. ð3:14Þ

The solution of (3.14) is

bmða; nÞ ¼ n̄að1� faÞ þ fað1� fbÞn̄b

1� fafb
,

bmðb; nÞ ¼ n̄bð1� fbÞ þ fbð1� faÞn̄a

1� fafb
. ð3:15Þ

The coefficients of n̄a; n̄b in (3.15) are the probabilities
that the parent gene of the gene chosen comes from
subpopulations a;b.
The representation (3.13) is transparent to under-

stand, however it is easier to find a detailed solution
directly from (3.12). We assume a symmetric
one-step mutation model. Then the determinant
of AðxÞ, jAðxÞj ¼ ðnaq�1

a þ ma þ fÞðnbq�1
b þ mb þ fÞ�

mamb, where f ¼ yð1� cosðxÞÞ. jAðxÞj ¼ ðf� l1Þ�
ðf� l2Þ, where l1; l2 are the roots of f2 þ fðxaþ

xbÞ þ xaxb � mamb ¼ 0, with xa ¼ naq
�1
a þ ma, and

similarly for xb. Both roots are real, less than zero,
and unequal. Consider the expression

jAðxÞj�1 ¼
1

l1 � l2
�

1

f� l1
�

1

f� l2

� �
¼

1

l1 � l2

1

�l1 þ y
�

1

1� r1 cosðxÞ

�
�

1

�l2 þ y
�

1

1� r2 cosðxÞ

�
, ð3:16Þ

where ri ¼ y=ð�li þ yÞ; i ¼ 1; 2. From the matrix equa-
tion for the inversion of the transform and the form of
the inverse of AðxÞ,

bpðj j a; nÞ ¼ Z p

�p
e�ixjjAðxÞj�1 ðnbq�1

b þ mb

h
þyð1� cosðxÞÞq�1

a nn

a þ maq
�1
b nn

b

i
dx. ð3:17Þ

From Eqs. (3.17) and (3.16)

bpðj j a; nÞ ¼ 1

l1 � l2
�
X1

k¼�1

a1ðk; jÞ

�l1 þ y
�

a2ðk; jÞ

�l2 þ y

� �
, (3.18)

where for i ¼ 1; 2

aiðk; jÞ ¼ q�1
a nak ðnbq�1

b þ mb þ yÞck�jðriÞ

h
�
y
2
ðck�jþ1ðriÞ þ ck�j�1ðriÞÞ

�
þ q�1

b nbkmack�jðriÞ. ð3:19Þ

The summation in (3.18) is finite because only a finite
number of fnak; nbkg are non-zero.
3.2.4. Computer implementation of the IS algorithm

An implementation of the IS algorithm for two
subpopulations (labelled 1 and 2) was based on the
formula (3.18) for bp. Using the example of locus DB4 in
Table 2 with y ¼ 2:0, m12 ¼ 5, and m21 ¼ 3, and relative
subpopulation sizes of (0.25, 0.75) five duplicate
computations of the likelihood of the sample and
TMRCA were made, each with one million runs and
different starting seeds. The accuracy is quite good,
with likelihood values 4:2; 4:4; 4:5; 4:2; 4:3 times 10�18

and mean TMRCA values in coalescent units of
3:219; 3:218; 3:209; 3:217; 3:217. The time taken for a
million runs is approximately 25min on a 2.4Ghz
Pentium 4 computer.
3.2.5. Simulation study

A simulation study was undertaken using the IS
algorithm for maximum likelihood estimation of muta-
tion and migration rates. The model has two subpopu-
lations with symmetric migration and a one-step
mutation model. Ten data sets of 5 independent loci
and 10 data sets of 20 independent loci were used to
check the accuracy of estimates, and to see the effect of
the number of loci on parameter estimation. Because of
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Table 3

Bias and precision of estimates from simulated data sets using

Migrate

5 loci 20 loci

y Bias 0.23 �0.60

y MSE 0.30 0.40

g Bias 1.2 0.25

g MSE 3.1 0.46

Table 2

Bias and precision of estimates from simulated data sets using the

algorithm described in this paper

5 loci 20 loci

y Bias 0.16 0.03

y MSE 0.09 0.01

g Bias 0.19 �0.05

g MSE 0.55 0.22
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computational constraints the study was limited. Like-
lihood estimation was done on computers of the Centre
Informatique National de l’Enseignement Supérieur
(CINES, France), occupying roughly 10 000 h on
500MHz processors. Simulated data sets were generated
using a discrete generation coalescent process in a two
population model with equal sizes N1 ¼ N2 ¼ 1000
genes, mutation rate y ¼ 4:0, and symmetric migration
rates g ¼ m12 ¼ m21 ¼ 4:0. Leblois et al. (2003) has
details about the discrete generation simulation techni-
que. Likelihoods were computed for each locus using the
IS algorithm described in this paper. Likelihoods for
each locus were then multiplied to find the overall
likelihood for the multilocus data set at each parameter
point. Finally, maximum likelihood estimates
were computed from the likelihood surface obtained
from the likelihood at the different parameter
points by kriging as described in the Appendix A.
A computation based on 5000 runs at 50 values of
the parameter vector yielded less accurate estimates
of likelihood than a computation based on 500,000
runs at the same 50 values, but the maximum
likelihood estimates were identical (details not shown).
Thus, accurate estimation of the likelihood for each
point is not essential. Further computations were based
on 5000 runs at 5000 points. For the two cases of 5 and
20 loci, the relative mean bias and relative mean square
error (MSE) were calculated for estimates of the
migration rate and mutation rate. Since migration was
symmetric in the model, the two migration rate
estimates were pooled.
The relative bias (bias/expectation) and relative MSE

(MSE/squared expectation) are presented in Table 2.
They show good performance of the algorithm, in
particular in estimating y. As expected, the precision
increases with the number of loci for estimation of both
mutation and migration parameters. In both cases of 5
and 20 loci the bias and the MSE are very small (below
10%). On the other hand, our results show a slight over-
estimation of the migration parameter g. Nevertheless,
the MSE is not very high indicating that estimates are
close to parameter values in the model.
Part of the variance of the estimator is due to the

variance of the maximum likelihood estimator, and part
of it is due to the imprecision in locating the maximum
of the likelihood function through sampling points and
smoothing the surface. Efficiency of the latter procedure
is demonstrated if it contributes only a small part of the
total variance. In this case, the correlation between
independent applications of the procedure to the same
data set should be high. Thus, we independently applied
this procedure (hypercube sampling, likelihood evalua-
tion, and kriging) twice to the ten 5-loci data sets.
The correlation for pairs of estimates was 40:975 for
all parameters, demonstrating the efficiency of the
procedure.
The discrete generation simulation model differed
slightly from the continuous time coalescent model
under which estimation was based. The limited number
of intervals used in the likelihood grid, or the simulation
model, may account for the slight bias of migration
estimates.
For comparison Migrate (Beerli and Felsenstein,

2001) was used with default settings to analyze the
same simulated data sets. Using the default settings,
Migrate takes about the same computer time as our
algorithm to analyze the data. In the study Migrate
estimates were not precise with a low number of loci.
Precision in estimating g, but not y, increased with the
number of loci (Table 3). Note that estimation with
Migrate assumed two different parameters y1 and y2,
instead of a single y parameter for both populations as
assumed in the previous estimations.

3.2.6. Microsatellite application

Microsatellite loci are highly variable and the
presence of back mutations cannot be ignored. There-
fore inference from such data can be challenging and
likelihood evaluation extremely computer intensive. The
algorithm described in this paper constitutes a signifi-
cant improvement over previous methods. Nielsen
(1997) developed an algorithm based on the pioneering
work of Griffiths and Tavaré (1994) to obtain maximum
likelihood estimates of the mutation parameter y at
microsatellite loci. The method is computationally
inefficient, even for a single locus, and computational
time might be large, as many runs through the Markov
chain do not contribute anything to the likelihood value.
In fact, only a few simulated genealogies will contribute
significantly to the likelihood evaluation, while most of
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Table 4

Microsatellite allele frequencies from the red fox populations of PI and

SR

Locus PI SR

DB1 n ¼ 46 n ¼ 42

0 3

1 5

2 32 2

4 10

5 1

7 14 11

9 10

DB3 n ¼ 46 n ¼ 46

0 38 32

1 8 11

5 3

DB4 n ¼ 46 n ¼ 44

0 8 20

9 38 14

12 4

14 5

15 1

DB6 n ¼ 46 n ¼ 42

0 1 2

1 27 27

2 18 13

OB n ¼ 46 n ¼ 44

0 28 18

6 8 16

8 10 10

VD10 n ¼ 42 n ¼ 42

0 5 5

2 13

4 12 12

6 25 12

C213 n ¼ 46 n ¼ 44

0 4 15

2 42 24

3 5
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the computational effort will be spent on genealogies
with very small probability, i.e. not consistent with the
observed data. This problem is especially evident in
runs in which too many mutation events occur. Nielsen
(1997) proposed truncating such runs according to a rule
based on the expected number of mutations. The IS
proposal described in this paper implicitly solves this
problem, concentrating most of the computational
effort on trees with high probability, given the observed
data. Of course the extension to subdivided populations
of the island model type here is new. Stephens and
Donnelly (2000) make a comparison on example data
sets of their technique with their implementation of the
Griffiths–Tavaré technique, and a comparison with
Batwing, an implementation of a Bayesian technique
of Wilson and Balding (1998). The Stephens–Donnelly
technique is the most efficient of the three. Their
microsatellite state space is truncated, so their distribu-
tions bp are computed from a system of linear equations
rather than using (3.9). Chen and Liu (2000) show that
in a data example the Griffiths–Tavaré technique
combined with path resampling is as efficient as the
Stephens–Donnelly technique and produces the same
likelihood curves (see also Chen et al. (2005)). Path
resampling could be used generally in other IS schemes
such as in this paper.

3.2.7. Red Fox data example

Lade et al. (1996) collected data on seven micro-
satellite loci from Australian populations of the red fox
Vulpes vulpes. As an example the two subpopulations
from Phillip Island (PI) and the adjacent mainland at
San Remo (SR) separated by a bridge are considered
here. The data, coded so the minimum position is 0 and
two base pairs are taken as a one unit mutation step, are
shown in Table 4. A stepwise mutation model with
single steps was used to model the data. This implies
that two alleles that differ by one mutation step are
more closely related than alleles that differ by many
mutation steps. The stepwise model is a possible model
for microsatellites when interest is in the relatedness
between individuals and in population substructuring.
Evolution at the different loci was assumed to be
independent with the same mutation rate y and two
migration rates between the populations. Likelihoods
for each locus were computed using the IS algorithm
described in this paper, then multiplied to find the
overall likelihood for the loci. Maximum likelihood
estimates of the mutation and migration rates were
found by fitting a likelihood surface using the kriging
method described in the Appendix A with 1000 design
points. Raw likelihood points were based on runs of
10,000 replicates. Parameter estimates and likelihoods
are shown in Table 5 for three different population size
ratios PI:SR. The ratio with maximum likelihood is
ð0:25; 0:75Þ. There is a large difference between the
likelihoods for sizes ð0:25; 0:75Þ and ð0:75; 0:25Þ; the
former is consistent with the higher diversity in SR, and
the latter is unlikely. A maximum likelihood estimate isby ¼ 2 with an approximate backward migration rate
estimate from PI to SR of bmPS ¼ 5 and in the other
direction bmSP ¼ 3. Forward migration rates are emSP ¼

1:6 and emPS ¼ 9. A likelihood surface for the migration
rates when y ¼ 2:0 is shown in Fig. 2. Likelihood units
are 10�89. Raw likelihood points were based on runs of
one million replicates. Pairwise distributions of the
number of steps between two genes both from PI, both
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Table 6

Distance distribution between two genes

jDj PI SR PI SR

0 0.565 0.447 0.388

1 0.276 0.333 0.362

2 0.096 0.132 0.150

3 0.038 0.053 0.060

4 0.015 0.021 0.024

5 0.006 0.008 0.010

6 0.002 0.003 0.004

7 0.001 0.001 0.002

8 0.000 0.001 0.000
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from SR, or one each from PI and SR are computed
from (3.3) and shown in Table 6. The square root of
average pairwise difference squares within and between
populations is shown in Table 7. There is quite a
variation between loci and variation from the theoretical
values.
As an illustration the mean and standard deviation of

the TMRCA at each locus, shown in Table 8, was
computed with the estimated parameters conditional on
the stepwise allele configuration observed. If the
mutation rate per locus per generation is 10�3, then
the effective population size is N ¼ y=ð2� 10�3Þ
¼ 1000, with effective population sizes on PI of 250
and SR of 750. Effective population sizes approximate
true population sizes over time by their harmonic
means. Supposing a generation time for foxes of five
years (Lade et al., 1996), then coalescent time
units are in units of 5000 years. The TMRCA of
the loci are well before the introduction of foxes into
Table 5

Likelihood estimates

ðq1; q2Þ Likelihood �10�89 by bmPS bmSP

(0.5, 0.5) 43� 103 1.96 2.07 3.92

(0.25, 0.75) 62� 105 2.00 5.07 3.27

(0.75, 0.25) 64 1.70 1.79 14.6

12

3

4

5

6

7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
84

th

mPS

Fig. 2. Likelihood surface
Australia around 1870 (Lade et al., 1996), which is
what is expected. Assuming the model holds over
the full ancestry may have the effect of inflating
2
3

4
5

mSP

eta = 2

for migration rates.

Table 7

Square root of average square pairwise differences

Locus PI SR PI SR

DB1 3.29 4.33 4.18

DB3 0.54 1.78 1.36

DB4 4.88 8.04 6.76

DB6 0.75 0.77 0.76

OB 5.04 4.88 5.05

VD10 2.78 2.87 3.05

C213 0.81 1.54 1.28

Theory 1.23 1.45 1.54
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Table 8

TMRCA in years

Locus mean sd

DB1 9100 3700

DB3 8200 3600

DB4 16000 5100

DB6 4600 2500

OB 11200 4200

VD10 7700 3400

C213 5500 2800
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migration rates, by explaining allele frequency differ-
ences by migration, rather than by drift.
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Appendix A

A.1. Likelihood surface

The IS algorithm proposed in this paper allows
computation of the likelihood with respect to para-
meters of interest. We have a major interest in
estimating migration and mutation parameters and
therefore in estimating the likelihood surface. There
are two aspects of computing the likelihood surface. The
first is pointwise computation of likelihoods; the second
is to find a way to interpolate the surface locally about
the points already computed taking into account that
the surface is a random realization of the true surface.
Potentially there are a number of different methods for
parameter estimation: IS with respect to a proposal
distribution containing the parameter distribution
(Griffiths and Tavaré, 1994; Stephens and Donnelly,
2000); bridge sampling (Fearnhead and Donnelly, 2001);
Markov chain Monte Carlo schemes (Beerli and
Felsenstein, 1999); and Bayesian methods (Wilson and
Balding, 1998). Beaumont et al. (2002) propose a
method for approximate Bayesian statistical inference
based on summary statistics. Their approach replaces
the full data with suitable summary statistics and
approximates the posterior density of the parameters
of interest using kernel density estimation techniques.
The use of summary statistics allows for increased
computational efficiency, although it does not make use
of all the information in the data, as typically in many
settings sufficient statistics are not available.
Here we have adopted a different approach based on

a local linear predictor for interpolated points on the
computed points which takes into account random
variation of the surface. The likelihood of the full
sample of chromosomes is evaluated at points in a
design set and then the likelihood surface is estimated
using kriging methods. Let yðhÞ denote the likelihood
function of a sample of n genes and let h ¼ ðy1; . . . ; ydÞ

be the vector of parameters of interest (for example,
mutation and migration rates), where h 2 D � Rd , dX1.
Suppose we have evaluated the likelihood at a set of N

parameter values fh1; . . . ; hNg. Each likelihood evalua-
tion can be extremely computer intensive and can
require a long running time. We are interested in
estimating the likelihood surface, that is, to predict
yðhÞ at any h 2 D given the values fyðh1Þ; . . . ; yðhNÞg. The
unknown function yðhÞ is assumed to be a realization
of a Gaussian process Y ¼ fY ðhÞ; h 2 Dg (see Ripley
(1981)). A Gaussian process is defined by its mean
function and covariance function:

E½Y ðhÞ
 ¼ mðhÞ, (A.1)

cov½Y ðhiÞ;Y ðhjÞ
 ¼ Cðhi; hjÞ. (A.2)

Moreover, normality of the finite-dimensional distri-
butions is assumed, that is for every finite subset of
points S ¼ fs1; . . . ; skg � D, the joint distribution
of ðY ðs1Þ; . . . ;Y ðskÞÞ is a multivariate normal. In a
situation where the likelihood is computed from
independent sampling realizations, the multivariate
normal assumption will hold approximately because
of the central limit theorem, but the assumption
is not critical because prediction of interpolated
points in the local surface explained below really only
depends on best prediction with minimum variance
consideration.
Given the value of the likelihood at fh1; . . . ; hNg, we

wish to predict the likelihood surface at a new point eh.
Let yN be the column vector defined as

yN ¼

yðh1Þ

..

.

yðhN Þ

0BB@
1CCA.

Then the minimum MSE unbiased predictor of yðehÞ is
given by

byðehÞ ¼ EðY ðehÞ j yNÞ ¼ mðehÞ þ kðehÞK�1ðyN � mNÞ (A.3)

and its variance is

varðbyðehÞÞ ¼ varðY ðehÞ j yNÞ ¼ Cðeh;ehÞ � kðehÞK�1kðehÞ0,
(A.4)
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where

mN ¼

mðh1Þ

..

.

mðhN Þ

0BB@
1CCA; kðehÞ ¼ Cðeh; h1Þ

..

.

Cðeh; hN Þ

0BB@
1CCA

and K ¼ ðKijÞ is N � N matrix whose elements are
given by

Kij ¼ Cðhi; hjÞ.

The linear prediction in (A.3)–(A.4) is known in
geostatistics and spatial statistics as kriging (Ripley,
1981; Cressie, 1993; Stein, 1999) and has previously been
applied to surface estimation in different contexts,
including interpolation, image restoration (Geman and
Geman, 1984; Ripley, 1988), prediction of deterministic
functions (Currin et al., 1991) and analysis of computer
experiments (Currin et al., 1991; Sacks et al., 1989a,b).
We are looking for a general method to estimate the

likelihood surface. The surface is assumed to be smooth,
continuous and differentiable. In particular, we require
that the mean is constant for all h 2 D, i.e. mðhÞ ¼ m, for
all h 2 D. As covariance function we use

Cðhi; hjÞ ¼ s2 exp �l
Xd

k¼1

ðyik � yjkÞ
2

( )
. (A.5)

where l40 determines the correlation structure of Y

and s2 is a scale factor. Of course, other choices of mean
and covariance functions are possible. See, for example,
Currin et al. (1991), Stein (1999). For example, we could
incorporate a linear (or polynomial) model for Y

through the mean function. In our experience there is
no need for this, especially when d is quite large (greater
than 4), as predictions based on a constant mean
function are quite good. Determination of m, l and s2 is
usually achieved by iterative search methods (Ripley,
1988; Mardia and Marshall, 1984).
The last issue we need to address is the choice of the N

values of the parameter vector h ¼ ðy1; . . . ; ydÞ at which
to evaluate the likelihood. Ideally we would like all the
areas of the space D to be represented. We have applied
Latin Hypercube Sampling to determine h1; . . . ; hN

(McKay et al., 1979). Briefly, Latin Hypercube Sampling

consists of dividing the range of each yk, k ¼ 1; . . . ; d,
into N intervals of equal marginal probability 1=N and
then sampling a point at random from each interval. In
this way a sample ykj , j ¼ 1; . . . ;N is obtained, and these
sampled values form the kth component in hi,
i ¼ 1; . . . ;N. The components of the various hi are then
matched at random. Therefore, there are N intervals on
the range of each element of hi and they combine to
form Nd cells which cover the space D. The bigger N is,
the better the estimation of the likelihood surface is. Of
course, the computational cost increases.
The results presented in this paper have been obtained
using the R package fields (http://www.cgd.ucar.
edu/stats/Software/Fields/index.shtml).
This package contains a collection of functions for curve
and function fitting with an emphasis on spatial data.
In particular, the function krig implements spatial
process estimates through kriging. The R web site is
http://www.R-project.org where information
and software is available, and the R manual is R: A

language and environment for statistical computing (R
Development Core Team, 2004).
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Tavaré, S. (Eds.), Progress in Population Genetics and Human

Evolution. Springer, Berlin, 330pp, IMA Volumes in Mathematics

and its Applications, vol. 87, pp. 231–255.

Kingman, J.F.C., 1982. The coalescent. Stochastic Processes Appl. 13,

235–248.

Lade, J.A., Murray, N.D., Marks, C.A., Robinson, N.A., 1996.

Microsatellite differentiation between Philip Island and mainland

Australian populations of the red fox Vulpes vulpes. Mol. Ecol. 5,

81–87.

http://www.cgd.ucar.edu/stats/Software/Fields/index.shtml
http://www.cgd.ucar.edu/stats/Software/Fields/index.shtml
http://www.R-project.org


ARTICLE IN PRESS
M. De Iorio et al. / Theoretical Population Biology 68 (2005) 41–53 53
Leblois, R., Estoup, A., Rousset, F., 2003. Influence of mutational and

sampling factors on the estimation of demographic parameters in a

continuous population under isolation by distance. Mol. Biol.

Evol. 20, 491–502.

Mardia, K.V., Marshall, R.J., 1984. Maximum likelihood estimation

of models for residual covariance in spatial regression. Biometrika

71, 135–146.

McKay, M.D., Conover, W.J., Beckman, R.J., 1979. A comparison of

three methods for selecting values of input variables in the analysis

of output from a computer code. Technometrics 21, 239–245.

Moran, P.A.P., 1975. Wandering distributions and the electrophoretic

profile, I. Theoret. Popul. Biol. 8, 318–330.

Moran, P.A.P., 1976. Wandering distributions and the electrophoretic

profile, II. Theoret. Popul. Biol. 10, 145–149.

Nagylaki, T., 1983. The robustness of neutral models of geographical

variation. Theoret. Popul. Biol. 24, 268–294.

Nielsen, R., 1997. A likelihood approach to population samples of

microsatellite alleles. Genetics 146, 711–716.

Nordborg, M., 2001. Coalescent theory. In: Balding, D.J., Bishop, M.,

Cannings, C. (Eds.), Handbook of Statistical Genetics. Wiley,

Chichester, pp. 179–208.

Notohara, M., 1990. The coalescent and the genealogical process

in geographically structured populations. J. Math. Biol. 29, 59–75.

Ohta, T., Kimura, M., 1973. A model of mutation appropriate to

estimate the number of electrophoretically detectable alleles in a

finite population. Genet. Res. 22, 201–204.
R Development Core Team, 2004. R: A language and environment for

statistical computing. R Foundation for Statistical Computing,

Vienna, Austria, ISBN 3-900051-00-3.

Ripley, B.D., 1981. Spatial Statistics. Wiley, New York.

Ripley, B.D., 1988. Statistical Inference for Spatial Processes. Cam-

bridge University Press, Cambridge.

Rousset, F., 1996. Equilibrium values of measures of population

subdivision for stepwise mutation processes. Genetics 142,

1357–1362.

Rousset, F., 2001. Inferences from spatial population genetics.

In: Balding, D.J., Bishop, M., Cannings, C. (Eds.), Handbook of

Statistical Genetics. Wiley, Chichester, pp. 239–269.

Sacks, J., Schiller, S.B., Welch, W.J., 1989a. Designs for computer

experiments. Technometrics 31, 41–47.

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989b. Design and

analysis of computer experiments (with comments). Statist. Sci. 4,

409–435.

Stein, M.L., 1999. Interpolation of Spatial Data. Springer, New

York.

Stephens, M., 2001. Inference under the coalescent. In: Balding, D.J.,

Bishop, M., Cannings, C. (Eds.), Handbook of Statistical Genetics.

Wiley, Chichester, pp. 213–238.

Stephens, M., Donnelly, P., 2000. Inference in molecular population

genetics. J. Roy. Statist. Soc. B 62, 605–655.

Wilson, I.J., Balding, D.J., 1998. Genealogical inference from

microsatellite data. Genetics 150, 499–510.


	Stepwise mutation likelihood computation by sequential importance sampling in subdivided population models
	Introduction
	Coalescent histories and importance sampling
	Stepwise mutation model
	A sample of two genes
	Importance sampling distribution  
	Single population
	Subdivided populations
	Two subpopulations
	Computer implementation of the IS algorithm
	Simulation study
	Microsatellite application
	Red Fox data example


	Acknowledgements
	Likelihood surface

	References


