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Advanced data analysis in population genetics 

Demographic inference under isolation by 

distance 

1.  Demographic inference and population genetic models 

2.  IBD models  

3.  A simple inference method : Rousset’s regression 

4.  Examples : some real data sets analyses (Pygmies and Damselflies) 

5.  Testing inference methods : application to the regression method 

6.  IBD between two habitats 

7.  Landscape genetics based on IBD 

8.  Other reasons to test and quantify IBD 



  colonisation extrêmement rapide de l'Australie, plus rapide au Nord qu'au 
Sud 

  Comment : homme? transports? 

Crapaud de la canne à 
sucre 

 Exemple d'une espèce invasive  

Introduction en Australie 
en 1935 



Crapaud de la canne à 
sucre 

  pas d'isolement par la distance 

  Pas d'isolement par la distance significatif dans les pops envahissantes -> 
Forte dispersion lors de l'invasion  

  Peut expliquer la colonisation rapide de la côte Est de l'Australie (50km par 
an), dispersion par l'homme pas forcément en cause 

 Exemple d'une espèce invasive  
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"seascape" genetics on the North-Atlantic harbour porpoise 

[Fontaine et al., 2007] 
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"seascape" genetics on the North-Atlantic harbour porpoise 

[Fontaine et al., 2007] 
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"seascape" genetics on the North-Atlantic harbour porpoise 

[Fontaine et al., 2007] 
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Inference in population genetics 

From McVean Courses : http://www.stats.ox.ac.uk/~mcvean/pgindex02.html 

Using genetic markers to learn about evolutionary factors acting on natural populations 



9 

Demographic inference in population genetics 

Demographic parameters (DP) are:  
population sizes, migration rates, dispersal distances, divergence times, etc … 

  General interest in evolutionary biology because DP are important 

factors for local adaptation of organisms to their environment 

  Great interest also in ecology et population management ("Molecular 

ecology" : conservation biology, study of invasive species,…) 
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How to do demographic inferences? 

 Direct methods, i.e. strictly demographic 
  tracking individuals: radio, GPS,… 

  Capture – Mark – Recapture studies (CMR) 

but do not account for temporal variability difficult and needs lots of time 

 Indirect methods:  neutral polymorphism and population genetics 
  more and more powerful because of recent advances in molecular biology 

and population genetic statistical analyses 

Are those methods equivalent ? 
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How to make demographic inferences? 

 Direct methods, i.e. strictly demographic 

 Indirect methods:  neutral polymorphism and population genetics 

Direct methods → "present-time and census" parameters 

Indirect methods → "past and effective" parameters 

It is generally considered that : 
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How to make demographic inferences? 

 Direct methods, i.e. strictly demographic 

 Indirect methods:  neutral polymorphism and population genetics 

Direct methods → "present-time and census" parameters 

Indirect methods → "past and effective" parameters 

not always true… as we will see under IBD 
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How to make demographic inferences? 

 Direct methods, i.e. strictly demographic 

 Indirect methods:  neutral polymorphism and population genetics 

To make demographic inferences from genetic polymorphism, we need : 

1 -  Evolutionary models described by demographic parameters (DP) 

2 - Some quantities (F-statistics), which can be  
 (i) expressed as a function of the DP of the model (migration, pop. size, etc.) 
 (ii) estimated on the genetic data  

 cf. course "Inference" by R. Vitalis : FST under the island model.  
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Models for structured populations: 

1 – the island model 

Most simple structured model 

2 to 3 demographic parameters :  

 d = sub-population number (or ∞) 

 N = sub-population size 

 m = migration rate 

Fully homogeneous and non-spatial

FST = 1 / ( 1 + 4Nm ) 
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Models for structured populations: 

1 – the island model 

Most simple structured model 

Fully homogeneous and non-spatial

Extremely useful to study theoretical evolutionary effects of migration 

but generally not realistic enough to allows precise demographic inferences 

In practice  FST ≠ 1 / ( 1 + 4Nm ) 
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Models for structured populations: 

2 – the stepping stone model 

also simple structured model but with 

localized dispersal (1D, 2D or 3D) 

the same 2 to 3 DP :  

 d = sub-population number (or ∞) 

 N = sub-population size 

 m = migration rate 

Fully homogeneous and "spatial"  

Also extremely useful to study theoretical evolutionary effects of localized dispersal 

but generally not realistic enough to allows precise demographic inferences   
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Models for structured populations: 

3 – the general isolation by distance model 

Based on the simple property that 

dispersal is localized in space  

i.e., 2 individuals are more likely to 

mate if they live geographically close 

to each other 

Endler (1977) first showed in a review that  

the vast majority of species has geographically localized dispersal 
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Models for structured populations: 

3 – the general isolation by distance model 

the migration rate between sub-populations is function of the geographic 

distance through a dispersal distribution   

  geographic distance 

Probability 
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Models for structured populations: 

3 – the general isolation by distance model 

the migration rate between sub-populations is function of the geographic 

distance through a dispersal distribution   

  geographic distance 

Pr 

lots of short distance 
dispersal events 

but also long distance migrants 

= long tailed distribution 

=leptokurtique 
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Models for structured populations: 

3 – the general isolation by distance model 

Population with a demic structure 

each node of the lattice corresponds 

to a panmictic sub-population  

of size N individuals 

2 models depending on individual spatial distribution in the landscape 

"continuous" population 

each node of the lattice is a single 

individual (N=1)   



22 

Models for structured populations: 

3 – the general isolation by distance model 

Fully homogeneous model :  

deme size or density of individuals is constant on the lattice 

dispersal distribution is the same for all lattice nodes 

2 models depending on individual spatial distribution in the landscape 
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Models for structured populations: 

3 – the general isolation by distance model 

2 (or more) demographic parameters :  

N or D : sub-population size or density of individuals 

σ2 : mean squared parent-offspring dispersal distance  

Dσ2 ≈ inverse of the "strength of IBD"   

2 models depending on individual spatial distribution in the landscape 
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Models for structured populations: 

3 – the general isolation by distance model 

The main characteristic of IBD models is that  

 genetic differentiation increases with geographic distance  

 weak IBD (large Dσ²) 

   Island model, no IBD (Dσ² = ∞) 

Strong IBD (small Dσ²) 

geographic distance 
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Models for structured populations: 

3 – the general isolation by distance model 

IBD models are quite general depending on how localized dispersal is :  

        Stepping stone         >           IBD              >       Island Model 

           σ² = m < 1                    1 < σ² << ∞                      σ² ≈  ∞ 
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Dispersal inference under isolation by distance: 
1 – the differentiation parameter : FST/(1-FST) 

The mathematical analysis is done in terms of probability of identity (cf Vitalis)  
and then expressed as relationship between F-statistics and DP 

For the demic model :  
Q1 is the probability of identity of two genes taken within a deme, 
Q2, Qr are prob. of identity of two genes taken in different demes (or at distance r), 

with  

€ 

Q1 −Qr

1−Q1
=

FST

1− FST
computed between demes at geographical distance r

€ 

Q1 −Q2

1−Q2

= FST                 Q2 ⇔Qrand  to take distance into account 
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Dispersal inference under isolation by distance: 
1 – the differentiation parameter : FST/(1-FST), ar 

The mathematical analysis is done in terms of probability of identity (cf Vitalis)  
and then expressed as relationship between F-statistics and DP 

For the "continuous" model : 

with Q1 the probability of identity of two genes taken within an individual 

and Qr the prob. of id. of two genes taken in two individuals separated  
     by a distance r 

€ 

ar ≡ Q1 −Qr

1−Q1
 computed between individuals at geographical distance r

€ 

ar ≡ Q1 −Qr

1−Q1
is analoguous to 

FST

1− FST
between individuals
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Dispersal inference under isolation by distance: 
2 – relationship between differentiation and distance 

RECALL : 2 main demographic parameters :  

N or D : sub-population size or density of individuals 

σ2 : mean squared parent-offspring dispersal distance  

: inverse of the "strength of IBD"   

+ µ the mutation rate (per locus per generation) 

 weak IBD (large Dσ²) 

Island model (Dσ² infinity) 

Strong IBD (small Dσ²) 

geographic distance 
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Dispersal inference under isolation by distance: 
2 – relationship between differentiation and distance 

The main result of the analysis of IBD models in terms of probabilities of identity is the 
following relationship between the differentiation parameter and the geographic distance 
and the different assumptions leading to it : 

€ 

ar or FST

1− FST
=
Q1 −Qr

1−Q1
≈

1− e
− 2µr
σ

4Nσ 2µ
+ constant

ar or 
FST

1− FST
≈r et µ petit r

4Nσ2 + constant

Simple linear relationship between differentiation and distance 
but only for small distances and low mutation rates 

in one dimension IBD models with demes :  
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Dispersal inference under isolation by distance: 
2 – relationship between differentiation and distance 

The main result of the analysis of IBD models in terms of probabilities of identity is the 
following relationship between the differentiation parameter and the geographic distance 
and the different assumptions leading to it : 

Simple linear relationship between differentiation and  
the logarithm of the distance 
but only for small distances and low mutation rates 

in two dimension IBD models :  

€ 

Q1 −Qr

1−Q1
≈r et µ petit ln(r)

4πNσ2 + constant

≈N→D ln(r)
4πDσ2 + constant
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Dispersal inference under isolation by distance: 
3 – the regression method of Rousset (1997, 2000) 

The regression slope is expected to be 4πDσ2, thus a simple method 
to infer Dσ2 is to do the regression on the data and estimate the slope 

   1/slope is an estimator of Dσ2 
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Dispersal inference under isolation by distance: 
3 – the regression method of Rousset (1997, 2000) 

The regression slope is expected to be 4πDσ2, thus a simple method 

to infer Dσ2 is to do the regression on the data and estimate the slope 

In practice : 

1 – go to field and sample 80-500 individuals on a given surface 

2 – genotype them using a dozen or more of microsatellite markers 

3 – Use Genepop : option IBD between individuals or demes 

      - it estimates FST/(1-FST) or ar for all pairs of demes or individuals 

      - it regresses them against the geographic distance or its logarithm 

      - it infer the slope of the regression     
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Inference of Dσ2 under isolation by distance: 
3 – the regression method of Rousset (1997, 2000) 

  Point estimate :   1/slope  estimate of 4πDσ2 

  Significance :  

  Mantel Test (by permutations) : 

Test the correlation between the genetic and the geographic matrices 

by permuting rows and columns from one of the two matrices 

 -> significant if the initial correlation is greater than  

      the correlation on permuted matrices (e.g. in the higher 5%) 

   Bootstrap : re-sampling of loci (ok because they are independent) 

 gives Confidence Intervals (CI) for the slope 

 -> significant if the CI does not contain 0 (null slope, infinite Dσ2) 
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Inference of Dσ2 under isolation by distance: 
4 – example on a Pygmy population 

Paul Verdu PhD  

National Museum of Natural History, 

Paris :  

History of the pygmy populations 

from Western Africa 
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Inference of Dσ2 under isolation by distance: 
4 – example on a Pygmy population 



36 

Inference of Dσ2 under isolation by distance: 
4 – example on a Pygmy population 
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Inference of Dσ2 under isolation by distance: 
4 – example on a Baka Pygmy population 

Total sample : 4πDσ2 = 373 

within group (small scale) : 4πDσ2 = 73  

using D=0.47 ind/km2  

we have 12.4 < σ2 < 63.2 km2 

Cavalli-Sforza & Hewlett (1982) found 
σ2 ≈ 3683 km2 

from a ethnological survey  
in Aka pygmies ! 
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Inference of Dσ2 under isolation by distance: 
4 – example on a Pygmy population 

indirect genetic estimate (regression method) :  12.4 < σ2 < 63.2 km2 

indirect ethnologic estimate (questionnaire) σ2 ≈ 3683 km2  

Those discrepancies can be explained by: 
•  demographic/ethnologic data (distances between birthplaces and  
   places of residence) may reflects exploration behavior rather  
   than parent-offspring dispersal 
•  the two studies done in different pygmy groups (Aka vs Baka)  
  which may have different dispersal behavior 

Conclusions :  
Although our results do not challenge the view that hunter–gatherer Pygmies have 
frequent movements in their socio- economic area, we demonstrate that extended 
individual mobility does not necessarily reflect extended dispersal across generations 
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Testing inference methods 
1 – How to test an inference method ? 

  Tests by simulations:  

     = how close are estimates / values specified in simulations 

•  simulations under the right model (i.e. the one used for inference) 

 ➠ gives the precision of the inference in the best cases 

•  simulations under a model that does not respect some assumptions 

➠ gives the robustness / model assumptions 

  Tests on real data sets for which we have "independent expectations" 

    = For demographic parameter inference from genetic data, the only solution 

       is to compare our indirect estimates with direct estimates obtain with  

      demographic methods (CMR, tracking, …) 
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Testing inference methods 
2 – Simulation test of the regression method 

(4) Comparison with the "expected" value of the slope : 

   Relative bias = ∑(Est-Exp)/Exp 

Mean squarre error MSE = ∑(Est-Exp)2/Exp2 

Proportion of estimates within a factor 2 from the expected value 

                           i.e. in [Dσ2
exp / 2 ; 2 x Dσ2

exp] 

(1) Choice of mutational and demographic parameter 
values for simulations 

(2) Simulation :  1000 runs for 10 loci   

(3) Analysis of the 1000 simulated multilocus data sets 

1000 estimates of the regression slope  
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Testing inference methods 
2 – Simulation test of the regression method 

Influence of mutational processes 

Method based on Identity by Descent (IBD) 

Marker information is not by descent but by 
state: e.g. Stepwise mutations for microsats 

Simulation results ➠ very robust method : 
small effects of different mutational models 

Influence of mutation rate (genetic diversity) 

Assumption: low µ ; but diversity is needed to 
have enough "genetic information" 

Simulation results:  

➠ better precision with high diversity (0.7-0.8) 

➠ strong bias for very high mutation rates He=(1-Q0) 

5.10-5 

1.2 10-4 

5 10-4 

5 10-3 

5 10-2 

Microsatellites are good markers despite their complex mutational processes 
because they show high genetic diversity 
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Testing inference methods 
2 – Simulation test of the regression method 

Influence of past demographic processes: 

Ex 1 : past decrease in density (bottleneck) 

Simulations results ➠ robust method because 
the influence of past density is very weak 

 Other tests:   
•  past density increase 
•  spatial expansion 
•  spatial heterogeneity in density 

All simulation tests ➠ Global robustness of the regression method to 
temporal and spatial heterogeneities of demographic parameters : 

 ➠ the regression method infer the present-time and local Dσ2 
of the population sampled 

time 

density 
D1 

D2  

(present) 

D1=10*D2 

Dσ2 inference 
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Testing inference methods 
3 – Comparisons between genetic and demographic estimates 

Demographic data (CMR)  

➠  Census density and 

distribution of dispersal 

•  example on damselfly populations (Watt et al. 2007 Mol.Ecol.) 
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Testing inference methods 
3 – Comparisons between genetic and demographic estimates 

Genetic data : 700 individuals genotyped 

at 13 microsatellite loci  

➠  indirect estimates of  Dσ2 

•  example on damselfly populations (Watt et al. 2007 Mol.Ecol.) 
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Testing inference methods 
3 – Comparisons between genetic and demographic estimates 

very good agreement between demographic and genetic estimates 

•  example on damselfly populations (Watt et al. 2007 Mol.Ecol.) 

Dσ² estimates 
Direct 

(demographic) 
Indirect 
(genetic) 

Site 1 277 222 
Site 2 249 259 
Site 3 555 753 
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Testing inference methods 
3 – Comparisons between genetic and demographic estimates 

Direct 
(Demography) 

Indirect 
(genetic) 

American Marten (Martes americana) 7.5 3.8 

Kangaroo rats (Dipodomys) 1.43 2.58 

intertidal snails (Bembicium vittatum) 2.4 3.6 
Forest lizards (Gnypetoscincus queenslandiae) 11.5 5.5 

Humans in the rainforest (Papous) 29.3 21.1 

Legumin (Chamaecrista fasciculata) 9.6 13.9 
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Testing inference methods 
3 – Comparisons between genetic and demographic estimates 

Direct 
(Demography) 

Indirect 
(genetic) 

American Marten 7.5 3.8 

Kangaroo rats 1.43 2.58 

intertidal snails 2.4 3.6 

Forest lizards 11.5 5.5 

Humans in the rainforest 29.3 21.1 

Legumin 9.6 13.9 very good agreement between  

demographic and genetic estimates for all available data sets with 

demographic and genetic data at a local geographical scale 

➠ validate the regression method and isolation by distance models  
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Usual (and often justified) critics on indirect 

demographic inferences 
Main critics on demographic parameter inference from genetic data 
(Hasting et Harrison 1994, Koenig et al. 1996, Slatkin 1994) : 

  Demo-genetic models are not realistic enough, especially dispersal modeling in 
the island model 

  Natural population are often inhomogeneous and at disequilibrium, whereas most 
demo-genetic models assume spatial homogeneity and time equilibrium 

  Assumptions on mutation rates and mutational models are oversimplified 
regarding complex mutational  processes of genetic markers 

  neutral markers do not really exist, there is always a form of selection 

 ➠ Whitlock & McCauley (1999, Heredity) : 

Indirect measure of gene flow and migration : Fst ≠1/(1+4Nm)  
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Usual (and often justified) critics on indirect 

demographic inferences 
Main critics on demographic parameter inference from genetic data 
(Hasting et Harrison 1994, Koenig et al. 1996, Slatkin 1994) : 

  no realistic models of dispersal 

  too many assumptions on spatial homogeneity and time equilibrium 

  oversimplified mutational models 

  genetic markers are not neutral 

 ➠ Whitlock & McCauley (1999, Heredity) : 

Indirect measure of gene flow and migration : Fst ≠1/(1+4Nm) 

So why do we have good results for  Dσ² inferences using the 
regression method on IBD models ? 
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Why Dσ² inferences using the regression method 
on IBD models seems to work so well ? 

  The model : Isolation by Distance is a "relatively realistic" model 

•  Dispersal is well modeled (allows localized but also leptokurtic dispersal) 

•  "Continuous" IBD models allows the consideration of continuous spatial 
distribution of individuals ➠ no need to a priori define sub-populations/demes  

  The inference method : the regression methods of Rousset (1997, 2000) is 
well designed, precise and robust 

•  the relationship between FST/(1-FST) and the distance is easier to interpret in 
terms of demographic parameters than Fstatistics alone (simple linear relationship) 

•  No assumptions on the shape of the dispersal (allows leptokurtic distributions) 

•  only valid for sampling at a local geographical scale (small distance assumption)      
 ➠ less demographic and selective spatial heterogeneities  

  The genetic markers : microsatellites are good highly informative markers 
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Why Dσ² inferences using the regression method 
on IBD models seems to work so well ? 

  The model : Isolation by Distance is a "relatively realistic" model  

  The inference method : the regression methods of Rousset (1997, 2000) is 
well designed, precise and robust  

  The genetic markers : microsatellites are good highly informative markers 

➠ Both the demo-genetic model, the inference method, the sampling strategy and 
the genetic markers are important for the inference of demographic parameters to 
be accurate, i.e. to obtain precise and robust estimation of local and present-time 
demographic parameters 
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Why Dσ² inferences using the regression method 
on IBD models seems to work so well ? 

Quick interpretation of the robustness of the regression method to 
mutational processes and past demographic changes using the 
coalescent theory : 

•  small deme/sub-population sizes 

•  high migration rates         short coalescence times 

•  sampling at small geographical scale 

➠ short coalescence times (i.e. most of the coalescent tree is in a 
recent past) decrease the influence of past factors acting on the 
distribution of polymorphism, such as past mutation processes et 
past demographic fluctuations 
Note that this effect is even more pronounced for the "continuous" IBD model 
because deme size is one individual and migration rates are very high (>0.3) 
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Extensions to classic isolation by distance models 

1 – IBD within and bewteen two habitats or groups 
Using IBD models to test for potential gene flow between populations of organisms 
living in different habitats in sympatry (Rousset 1999) 

Different habitats can be, for example :  

•  different hosts for a parasite 

•  agricultural vs natural populations 

IBD within each habitat, but what could the signal of the differentiation 
between the habitats tell us about gene flow between those habitats 

? 
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Extensions to classic isolation by distance models 

1 – IBD within and bewteen two habitats or groups 
Using IBD models to test for potential gene flow between populations of organisms 
living in different habitats in sympatry (Rousset 1999) 

Assumption : IBD in at least one of the habitats 

The theory showed that if there is enough gene flow between the two habitats 
(m>0.001)  then IBD should be observed between habitats, with a 
"intermediate" IBD pattern compared to IBD patterns within each habitat 

if there is no gene flow between the two habitats (m<0.001)  then the 
differentiation between habitats should be independent of the distance 

? 
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Extensions to classic isolation by distance models 

1 – IBD within and between two habitats or groups 
Ex: European Corn Borer (Ostrinia Nubilalis), a major pest for corn plantations 

    Native in Europe, introduced in North America 
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Extensions to classic isolation by distance models 

1 – IBD within and between two habitats or groups 
The European Corn Borer (Ostrinia Nubilalis) 

naturaly feeds on mugwort (Asteraceae) in Europe 
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Extensions to classic isolation by distance models 

1 – IBD within and between two habitats or groups 
  GMO "Bt" maize plants are resistant to the European Corn Borer, but to manage 
the evolution of resistance to the B. thuringiensis toxins in the pest, there is a need 
to keep "refuge habitats" near the GMO plantations 

  Refugia can theoretically be plant on which the insect can feed and reproduce, 
however, to be efficient, there should be enough gene exchanges between pest 
populations living on plantations and refuges 

Martel et al (2003, 
Heredity) tested the 
usefulness of using 
mugwort natural 
populations as refuges 
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Extensions to classic isolation by distance models 

1 – IBD within and between two habitats or groups 
Expectation :  

No gene flow between habitats (m<0.01) 

➠ differentiation between habitats 
independent of geographic distance 

What is observed : 

•  Within mugwort-feeding pops ➠ slope is  
0.0163 (significantly ≠ 0) and Dσ2=5 moths 

•  Within maize-feeding pops ➠ slope is 
0.0020. (not ≠ 0) and Dσ2=40 moths 

•  Between Maize & Mugwort-feeding pops 
➠ slope is 0.0029, (not ≠ 0) 

•  Differentiation is always higher between 
habitats than within each habitat 
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Extensions to classic isolation by distance models 

1 – IBD within and between two habitats or groups 
Conclusions : 

1.  Difference in Dσ2 between the two 
host-plant groups probably due to 
higher densities in maize-feeding 
populations rather than differences in 
dispersal 

2.  there is clearly a strong barrier to gene 
flow between mugwort and maize-
feeding populations of the European 
corn borer 

 ➠ natural mugwort populations should 
not be used as refuges because it will 
not limit evolution of resistance within 
maize-feeding populations but only 
within mugwort-feeding populations 
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Extensions to classic isolation by distance models 

2 – euclidian distance vs "least cost distance" 
Habitat connectivity is often not homogeneous in space but strongly depends on 
landscape feature ➠ using euclidian distance may not be optimal  

ex : Roe deers (Capreolus capreolus) in a patchy landscape (Coulon et al. 2004) 

© Simon Fellous, cNature 
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Extensions to classic isolation by distance models 

2 – euclidian distance vs "least cost distance" 
ex : Roe deer population in a patchy landscape (Coulon et al. 2004) 

the least cost distance is the trajectory that  

maximizes the use of wooded corridors 

Open land 

Forest patches 

Euclidian 
distance 

Least cost 
distance 
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Extensions to classic isolation by distance models 

2 – euclidian distance vs "least cost distance" 
ex : Roe deer population in a patchy landscape (Coulon et al. 2004) 

  Better correlation between genetic differentiation 
and least cost distance 
  IBD is only significant for females when 
considering the least cost distance 
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Extensions to classic isolation by distance models 

2 – euclidian distance vs "least cost distance" 
ex : Roe deer population in a patchy landscape (Coulon et al. 2004) 

Limits and problems: 

  What cost should we attribute to different 
landscape features? 

  Inference of the cost from genetic data may be 
really difficult (too many parameters) 

  Does a better correlation really means a better 
model under IBD models? 



Extensions to classic isolation by distance models 

3 – euclidian distance vs resistance distance 
Isolation by resistance (McRae 2006 Evolution) : analogy with circuit theory 

euclidian distance 

Least cost distance 
Resistance surface 

64 

Not a single path but all 
potential paths across the 
whole landscape surface 

This "distance" is defined as 
the effective resistance that 
would oppose a conductive 
material displaying a topology 
similar to that of the study 
area. 
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Extensions to classic isolation by distance models 

3 – euclidian distance vs resistance distance 
Isolation by resistance (McRae 2006 Evolution) 

patterns of IBD in heterogeneous landscapes that would not have appeared with the 
use of Euclidean or least cost distances 

However, as for the least cost methods, it is not straightforward to assign a resistance 
value for each of the different landscape features 

Using  the resistance distance might help to reveal 



Habitat reduction (documented) 
→ reduced genetic diversity ? 

    Not detectable with 9 microstallites… 

Forest skink 

Documented habitat reduction, 10 skink 
generations ago 
→ reduced genetic diversity ? 

    No decrease in Na, He detected with 9 
microsatellites…no signs of bottlenecks with 
specific methods… 

Implications to real data set analyses:  
ex: Conservation genetics of forest skinks 



Forest skink 

But strong isolation by 
distance Dσ²=7 [5.5 - 11.5] 

âr 

Documented habitat reduction, 10 skink 
generations ago 
→ reduced genetic diversity ? 

    No decrease in Na, He detected with 9 
microsatellites…no signs of bottlenecks with 
specific methods… 

Implications to real data set analyses:  
ex: Conservation genetics of forest skinks 



Forest skink 

Implications to real data set analyses:  
ex: Conservation genetics of forest skinks 

Documented habitat reduction, 10 skink 
generations ago 
→ reduced genetic diversity ? 

    No decrease in Na, He detected with 9 
microsatellites…no signs of bottlenecks with 
specific methods… 



Bottleneck/Reduction in population size under 
WF vs. IBD 

WF population    IBD population 

     Reduction in 
   population size 



  30 individuals, 10 loci 

  2 sampling designs for IBD: 

 Local sample        Scaled sample 
= at adajacent nodes   = on the entire  

     population surface 

Simulation sampling design 



Control (i.e. without bottleneck, size=Ni) 

Number of generations 
between bottleneck and 
sampling times 

Local sample (LS) 
Scaled sample (SS) 



Results (2) : nA in bottlenecked 
populations 

Local sample (LS) 
Scaled sample (SS) 

Number of alleles : 
 Influence of IBD is strong 

 Influence of the sampling design is 
substantial in large population 

decrease the differences WF / IBD 
Medium size population = 
intermediate results… 



Importance of the spatial features and localized dispersal 

Effect of spatial structure (IBD) : 

  Genetic diversity (Na, He) is only weakly  
reduced under IBD after a bottleneck 

+  No bottleneck detection under IBD 
(BOTTLENECK Cornuet & Luikart 1996, M 
Garza & Williamson 1996)  

+ many false expansion signals! 

Spatialized=strong IBD 

Non spatialized 

= WF 

Forest skink Documented habitat reduction, 10 skink 
generations ago 
→ reduced genetic diversity ? 

    No decrease in Na, He detected with 9 
microsatellites…no signs of bottlenecks 

generations after bottleneck 

Reduction in genetic diversity 

Implications to real data set analyses:  
ex: Conservation genetics of forest skinks 



Forest skink 

Importance of the spatial features 
and localized dispersal 

Implications to real data set analyses:  
ex: Conservation genetics of forest skinks 
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Extensions to classic isolation by distance models 

3 –  

Assignment results for 37 tusks from a large seizure in 
Singapore. Circles represent the estimated origin of the 
37 tusks analyzed. Plus signs coincide with the those in 
the figure above. [from Wasser et al. 2007] 


