Advanced data analysis in population genetics
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Advanced data analysis in population genetics

Demographic inference under isolation by

S OO s W N

distance

Demographic inference and population genetic models

IBD models

A simple inference method : Rousset’s regression

Examples : some real data sets analyses (Pygmies and Damselflies)
Testing inference methods : application to the regression method
IBD between two habitats

Landscape genetics based on IBD

Other reasons to test and quantify IBD



Exemple d'une espece invasive

Crapaud de la cann
. LV A '> N

sucre e
Introduction en Australie
en 1935

<

ea

\/

» colonisation extrémement rapide de I'Australie, plus rapide au Nord qu'au
Sud

» Comment : homme? transports?



Exemple d'une espece invasive

a
’ v

Crapaud de la canne
_ St
sucre | i

> pas d'isolement par la distance

In(distance) (m)

v

» Pas d'isolement par la distance significatif dans les pops envahissantes ->
Forte dispersion lors de l'invasion

» Peut expliquer la colonisation rapide de la c6te Est de I'Australie (50km par
an), dispersion par I'hnomme pas forcément en cause



4 Y

“"seascape” genetics on the North-Atlantic harbour porpoise

[Fontaine et al., 2007]

BMC Biology BloMed Cerr
Research article

Rise of oceanographic barriers in continuous populations of a
cetacean: the genetic structure of harbour porpoises in Old World

waters
Michaél C Fontaine*!-2, Stuart JE Baird?, Sylvain Piry?, Nicolas Ray?,
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mcs on the North-AtIantiC_

Rise of oceanographic barriers in continuous populations of a
cetacean: the genetic structure of harbour porpoises in Old World
waters

Abstract

Background: Understanding the role of seascape in shaping genetic and demographic population structure is highly
challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could

effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape
genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the
harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its
dispersal.

Results: Analyses of |0 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern
North Atlantic behaves as a 'continuous’ population that widely extends over thousands of kilometres with significant
isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range.

These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale,
porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.

Conclusion: The presence of these barriers to gene flow that coincide with profound changes in oceanographic
features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical
processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further
suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean
warming.




Rise of oceanographic barriers in continuous populations of a
cetacean: the genetic structure of harbour porpoises in Old World
waters
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Figure 6

Genetic and geographic distance for pairs of sampled geographic areas. Yellow triangles indicate comparison
between pairs of sampled localities within the same cluster; blue squares indicate pairs with one sampled locality in the NA:
cluster and the IB cluster; red damonds indicate pairs with one sampled locality in the NAt cluster and the BS cluster; and
black circle indicate the comparison between the IB and the BS cluster.

Field-of-view Sensor (SeaWIFS, modified from [80]).

Figure 7
Climatological (1997-2006) annual sea surface chlorophyll concentrations. Data cbtained with Sea-viewing Wide
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Demographic inference in population genetics

Demographic parameters (DP) are:

population sizes, migration rates, dispersal distances, divergence times, etc ...

» General interest in evolutionary biology because DP are important

factors for local adaptation of organisms to their environment

» Great interest also in ecology et population management ("Molecular

ecology" : conservation biology, study of invasive species,...)



How to do demographic inferences?

» Direct methods, i.e. strictly demographic

v tracking individuals: radio, GPS,...
v' Capture — Mark — Recapture studies (CMR)

but do not account for temporal variability difficult and needs lots of time

» Indirect methods: neutral polymorphism and population genetics

v" more and more powerful because of recent advances in molecular biology

and population genetic statistical analyses

Are those methods equivalent ?
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How to make demographic inferences?

» Direct methods, i.e. strictly demographic

» Indirect methods: neutral polymorphism and population genetics

It is generally considered that :

Direct methods — "present-time and census™ parameters

Indirect methods — "past and effective” parameters

11



How to make demographic inferences?

» Direct methods, i.e. strictly demographic

» Indirect methods: neutral polymorphism and population genetics

Direct methods — "present-time and census™ parameters

Indirect methods — " nd effective™ parameters

not always true... as we will see under IBD
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How to make demographic inferences?

» Direct methods, i.e. strictly demographic

» Indirect methods: neutral polymorphism and population genetics

To make demographic inferences from genetic polymorphism, we need :
1 - Evolutionary models described by demographic parameters (DP)
2 - Some quantities (F-statistics), which can be
(i) expressed as a function of the DP of the model (migration, pop. size, etc.)

(i) estimated on the genetic data

cf. course "Inference" by R. Vitalis : Fg; under the island model.

13



Demographic models

Population growth

Population bottlenecks

Subdivided populations

Population splits

Admixture




Models for structured populations:
1 — the island model

Most simple structured model
9 ‘—'0§
2 to 3 demographic parameters :

d = sub-population number (or «)

N = sub-population size

v v ulfl . .
m = migration rate
o — 0 —0

Fully homogeneous and non-spatial

Fs;=1/(1+4Nm)

15



Models for structured populations:

1 — the island model

o »

v v
Q<‘<7,C

Most simple structured model

Fully homogeneous and non-spatial

Extremely useful to study theoretical evolutionary effects of migration

but generally not realistic enough to allows precise demographic inferences

In practice Fg:#1/(1+ 4Nm)
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Models for structured populations:

2 — the stepping stone model

also simple structured model but with
I T 00 0@ | jized dispersal (1D, 2D or 3D)

I I the same 2 to 3 DP :

— 00— O—— 0 —0 d = sub-population number (or «)

I N = sub-population size
m = migration rate

O — 0—H0——— 050

Fully homogeneous and "spatial™

Also extremely useful to study theoretical evolutionary effects of localized dispersal

but generally not realistic enough to allows precise demographic inferences
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Models for structured populations:

3 — the general isolation by distance model

—0— 00 0 0 0 0 ©°

— 00— 0 O 0 0 O O O Basedon the simple property that

— 00 0 0 0 0 0 @ dispersal is localized in space

'o— 00— 90— 0 0 0 0 o o it 2individuals are more likely to

e e o000 0—0 mate if they live geographically close
[T

7S o—o .\‘\. A to each other
—

: o090 0 9 o

Endler (1977) first showed in a review that

the vast majority of species has geographically localized dispersal
18



Models for structured populations:

3 — the general isolation by distance model

o—0—0—90—0—0—0—0—0
oo o o 0 0 o o o
Llo— 90— 909000000
Probability

oo oo 0 00 0o )
oo oo 0 00 0o

L [
Lo o—eo o\o\o *—eo
%—\\
- o 60 00 o -

geographic distance

the migration rate between sub-populations is function of the geographic
distance through a dispersal distribution
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Models for structured populations:

3 — the general isolation by distance model

o0 o6 6 o6 o6 o6 o ¢
® ® ® ® ® ® ® ® ® IOTS of short distance
dispersal events
O O U Ul | | e s
but also long distance migrants
O O U Ul | | s s P _ e
g = long tailed distribution
O O Onlimml amml . s =leptokurtique
L |
% T S
——
o0 o 9 o -
geographicM

the migration rate between sub-populations is function of the geographic
distance through a dispersal distribution
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Models for structured populations:

3 — the general isolation by distance model

2 models depending on individual spatial distribution in the landscape

I~

\P

[l | |

T T
} \
\
]
I
/
/
/
/

Population with a demic structure “continuous™ population
each node of the lattice corresponds each node of the lattice is a single
to a panmictic sub-population individual (N=1)

of size N individuals
21



Models for structured populations:

3 — the general isolation by distance model

2 models depending on individual spatial distribution in the landscape

T
}\
\
]
I
/
]
Ramp
/
/

[l | |

Fully homogeneous model :
deme size or density of individuals is constant on the lattice

dispersal distribution is the same for all lattice nodes
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Models for structured populations:

3 — the general isolation by distance model

2 models depending on individual spatial distribution in the landscape

T T
}\
\
]
I
/
/
Ramp
/
/

[l | |

2 (or more) demographic parameters :
N or D : sub-population size or density of individuals
02 : mean squared parent-offspring dispersal distance

Dao? = inverse of the "strength of IBD"
23



genetic differentiation

Models for structured populations:

3 — the general isolation by distance model

The main characteristic of IBD models is that

genetic differentiation increases with geographic distance

<«— Strong IBD (small Do?)

* (1)

0.05|
L]
0.04} R
L
0.03¢ ) " * (i) <«— weak IBD (large Do?)
. 02- 3 ; ] [ m(ii1)

.01 \
' 2 4 8 16 Island model, no IBD (Da? = «

32
geographic distance

)
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Models for structured populations:

3 — the general isolation by distance model

oereireireire [t —o—t—2 o 2

Sl eeeaaan
Ll Snesssssse
otototos  (TTTTTTT
0 A | e e o i il

IBD models are quite general depending on how localized dispersal is :
Stepping stone > IBD > Island Model

o2=m<1 1< 0?2<< g?=

25



Dispersal inference under isolation by distance:

1 — the differentiation parameter : Fg{/(1-Fgy)

The mathematical analysis is done in terms of probability of identity (cf Vitalis)
and then expressed as relationship between F-statistics and DP
For the demic model :

Q, is the probability of identity of two genes taken within a deme,
Q,, Q, are prob. of identity of two genes taken in different demes (or at distance r),

1—Or Fsr : -
Q-0 — computed between demes at geographical distance r
1-O1 1-Fsr
with -
Qll QQZ = Fsr and Q2 — Qr to take distance into account
=

26



Dispersal inference under isolation by distance:

1 — the differentiation parameter : Fg{/(1-Fg1), a,

The mathematical analysis is done in terms of probability of identity (cf Vitalis)
and then expressed as relationship between F-statistics and DP

For the "continuous" model :

O -0

1-0On

computed between individuals at geographical distance r

=~
il

with Q, the probability of identity of two genes taken within an individual

and Q, the prob. of id. of two genes taken in two individuals separated
by a distance r

— 0, F
O-0 is analoguous to d between individuals
1-0 1 - Fsr 27
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Dispersal inference under isolation by distance:

2 — relationship between differentiation and distance

RECALL : 2 main demographic parameters :
N or D : sub-population size or density of individuals
o? . mean squared parent-offspring dispersal distance

. inverse of the "strength of IBD"

+ u the mutation rate (per locus per generation)

O <«— Strong IBD (small Do?)

o
wn

o
s

*(i) <= weak |BD (large Do?)

H(jii)
2 4 8 16 32 \

geographic distance Island model (Do? infinity)

L 2
-
*
]
|

genetic differentiation
o o o o o
o o
[\V] w
->

o
=
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Dispersal inference under isolation by distance:

2 — relationship between differentiation and distance

The main result of the analysis of IBD models in terms of probabilities of identity is the
following relationship between the differentiation parameter and the geographic distance

and the different assumptions leading to it :

in one dimension IBD models with demes :
—+/2ur

Fsr Q1 Qr l-e ©
dar Or + constant
e - O 4N 01/

ar O FST L
1 - Fsr ANG”

Simple linear relationship between differentiation and distance
but only for small distances and low mutation rates

+ constant
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Dispersal inference under isolation by distance:

2 — relationship between differentiation and distance

The main result of the analysis of IBD models in terms of probabilities of identity is the
following relationship between the differentiation parameter and the geographic distance
and the different assumptions leading to it :

in two dimension IBD models :

O — O __I et u petit In(7) + constant
I Q1 4J'L’N02
1
N—-p _1n() + constant
4D o”

Simple linear relationship between differentiation and
the logarithm of the distance
but only for small distances and low mutation rates 30
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Dispersal inference under isolation by distance:
3 — the regression method of Rousset (1997, 2000)

The regression slope is expected to be 41mDg?, thus a simple method

to infer Do? is to do the regression on the data and estimate the slope

In practice :
1 — go to field and sample 80-500 individuals on a given surface
2 — genotype them using a dozen or more of microsatellite markers
3 — Use Genepop : option IBD between individuals or demes
- it estimates F4/(1-Fg7) or a, for all pairs of demes or individuals
- it regresses them against the geographic distance or its logarithm

- it infer the slope of the regression

32



Inference of Do? under isolation by distance:
3 — the regression method of Rousset (1997, 2000)

> Point estimate : 1/slope = estimate of 41Do?

» Significance :

v' Mantel Test (by permutations) :
Test the correlation between the genetic and the geographic matrices
by permuting rows and columns from one of the two matrices
-> significant if the initial correlation is greater than
the correlation on permuted matrices (e.g. in the higher 5%)
v' Bootstrap : re-sampling of loci (ok because they are independent)
gives Confidence Intervals (Cl) for the slope

-> significant if the Cl does not contain 0 (null slope, infinite Do?)
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Inference of Do? under isolation by distance:

4 — example on a Pygmy population

Paul Verdu PhD
National Museum of Natural History,
Paris :

: History of the pygmy populations

from Western Africa




Inference of Do? under isolation by distance:

4 — example on a Pygmy population

biology Bick. Latt

Ll letters e et o
Sk

Limited dispersal in mobile
thunter—gatherer Baka
Pygmies

Paul Verdu'<*, Raphaél Leblois®, Alain Froment®,
Sylvain Théry’, Serge Bahuchet®,

Frangols Rousset®, Evelyne Heyer”

and Renaud Vitalis” '
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ce of Do? under isolation by dis

4 — example on a Pygmy population

binth location -~
(no. of individuals) N
O B

Pygmy peopling




Inference of Do? under isolation by distance:

4 — example on a Baka Pygmy population

'
gt
LR -

Figure 2. Correlaton between genetic differentistion and the
logarithm of geographical distances among Baka Pygmoes.
Multlocus cstimates of pairwise differenpation (4,) are
plotted against the loganthm of geographical distances (in
kilometres), The lincar regression considenng all pairs of
individuals &5 vy = 0.0027x-0.0153 (in blue). The hncar
regressaon considenng only parrs of indnaduals borm within
ihe same group s y = 0.0137x-0.1138 (in red),

Total sample : 4rrDo? = 373

within group (small scale) : 4wDo?= 73

using D=0.47 ind/km?
we have 12.4 < 0?< 63.2 km?
Cavalli-Sforza & Hewlett (1982) found
0= 3683 km?

from a ethnological survey
in Aka pygmies !

37



Inference of Do? under isolation by distance:
4 — example on a Pygmy population

indirect genetic estimate (regression method) : 12.4 < 02 < 63.2 km?
indirect ethnologic estimate (questionnaire) o?= 3683 km?

Those discrepancies can be explained by:
* demographic/ethnologic data (distances between birthplaces and

places of residence) may reflects exploration behavior rather
than parent-offspring dispersal
» the two studies done in different pygmy groups (Aka vs Baka)

which may have different dispersal behavior

Conclusions :
Although our results do not challenge the view that hunter—gatherer Pygmies have

frequent movements in their socio- economic area, we demonstrate that extended

individual mobility does not necessarily reflect extended dispersal across generations
38



Testing inference methods

1 — How to test an inference method ?

» lTests by simulations:

= how close are estimates / values specified in simulations
« simulations under the right model (i.e. the one used for inference)
m gives the precision of the inference in the best cases
 simulations under a model that does not respect some assumptions

m gives the robustness / model assumptions

» Tests on real data sets for which we have "independent expectations”

= For demographic parameter inference from genetic data, the only solution
Is to compare our indirect estimates with direct estimates obtain with

demographic methods (CMR, tracking, ...)
39



Testing inference methods

2 — Simulation test of the regression method

(1) Choice of mutational and demographic parameter
values for simulations

v

(2) Simulation : 1000 runs for 10 loci

v

(3) Analysis of the 1000 simulated multilocus data sets

- 1000 estimates of the regression slope

v

(4) Comparison with the "expected" value of the slope :
Relative bias = ) (Est-Exp)/Exp
Mean squarre error MSE = ) (Est-Exp)4/Exp?
Proportion of estimates within a factor 2 from the expected value

i.e.in[Do?, /2 ;2 x Do?

exp exp] 40




Testing inference methods

2 — Simulation test of the regression method

[ Biais relatif
0.16 7 B MSE
0.12 1
0.08 T
0.04
0 T T T T
IAM KAM SMM GSM GSM
(K=10) borné
0.4 1 5105 biais relatif
059 12104 MOE 500
0.2 5104
0.1 w
0 T T T 1
-0.1¢ 0.6 0.7 0.8 0.9
'8§ i diversité génétique
0.4 - He=(1-Q,)
-0.5 -

Influence of mutational processes
Method based on Identity by Descent (IBD)

Marker information is not by descent but by
state: e.g. Stepwise mutations for microsats

Simulation results " very robust method :
small effects of different mutational models

Influence of mutation rate (genetic diversity)

Assumption: low yp ; but diversity is needed to
have enough "genetic information”

Simulation results:
w better precision with high diversity (0.7-0.8)

w strong bias for very high mutation rates

Microsatellites are good markers despite their complex mutational processes
because they show high genetic diversity 41



Testing inference methods

2 — Simulation test of the regression method

density

D1

D2
>

time (present)

084 D1=10*D2

Biais relatif
049 o MSE
0 =0 I 1
-0.4 7 10 100 1000 10000
-0.8 - générations
Do? inference

Influence of past demographic processes:
Ex 1 : past decrease in density (bottleneck)

Simulations results "™ robust method because
the influence of past density is very weak

Other tests:
* past density increase
* spatial expansion
* spatial heterogeneity in density

All simulation tests ™ Global robustness of the regression method to
temporal and spatial heterogeneities of demographic parameters :

w the regression method infer the present-time and local Do?
of the population sampled

42
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Testing inference methods

3 — Comparisons between genetic and demographic estimates
« example on damselfly populations (Watt et al. 2007 Mol.Ecol.)

(a) Lower Itchen Complex

- LIC Demographic data (CMR)

° w  Census density and
§ = e distribution of dispersal
:-E &

T (b) Beaulieu
- Heath
(=]
5
=
£
=
Z
200 40>(k) 600 800 1,000 1,200

1,400

Cumulative distance moved (m)




Testing inference methods

3 — Comparisons between genetic and demographic estimates
« example on damselfly populations (Watt et al. 2007 Mol.Ecol.)

Genetic data : 700 individuals genotyped
at 13 microsatellite loci

m indirect estimates of Do?

1.00

0.80 A

(.60
<
¥ 0.40
020 -

0.00

020 4

Genetic differentiation

-0.40 A

=().60) as v T v
0 2 4 6 8
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Testing inference methods

3 — Comparisons between genetic and demographic estimates
« example on damselfly populations (Watt et al. 2007 Mol.Ecol.)

Do? estimates
Direct Indirect
(demographic) (genetic)
Site 1 277 222
Site 2 249 259
Site 3 555 753

very good agreement between demographic and genetic estimates

45



Testing inference methods

3 — Comparisons between genetic and demographic estimates

Direct Indirect
T A : (Demography) (genetic)
American Marten (Martes americana) 7.5 3.8
Kangaroo rats (Dipodomys) 1.43 2.58
intertidal snails (Bembicium vittatum) 24 3.6
Forest lizards (Gnypetoscincus queenslandiae) | 11.5 5.5
Humans in the rainforest (Papous) 29.3 211
Legumin (Chamaecrista fasciculata) 9.6 13.9

46



Testing inference methods

3 — Comparisons between genetic and demographic estimates

Direct | Indirect

(Demography) (genetic)
American Marten 7.5 3.8
Kangaroo rats 1.43 2.58
intertidal snails 24 3.6
Forest lizards 1.5 5.5
Humans in the rainforest | 29.3 211

very good agreement between Legumin 9.6 13.9

demographic and genetic estimates for all available data sets with
demographic and genetic data at a local geographical scale

w validate the regression method and isolation by distance models

47



Usual (and often justified) critics on indirect

demographic inferences

Main critics on demographic parameter inference from genetic data
(Hasting et Harrison 1994, Koenig et al. 1996, Slatkin 1994) :

» Demo-genetic models are not realistic enough, especially dispersal modeling in
the island model

» Natural population are often inhomogeneous and at disequilibrium, whereas most
demo-genetic models assume spatial homogeneity and time equilibrium

» Assumptions on mutation rates and mutational models are oversimplified
regarding complex mutational processes of genetic markers

» neutral markers do not really exist, there is always a form of selection
m \\hitlock & McCauley (1999, Heredity) :
Indirect measure of gene flow and migration : Fst #1/(1+4Nm)

48



Usual (and often justified) critics on indirect

demographic inferences

Main critics on demographic parameter inference from genetic data
(Hasting et Harrison 1994, Koenig et al. 1996, Slatkin 1994) :

» no realistic models of dispersal
» too many assumptions on spatial homogeneity and time equilibrium

» oversimplified mutational models

» genetic markers are not neutral
m \\hitlock & McCauley (1999, Heredity) :
Indirect measure of gene flow and migration : Fst #1/(1+4Nm)

So why do we have good results for Do? inferences using the
regression method on IBD models ?

49



Why Do? inferences using the regression method
on IBD models seems to work so well ?

» The model : Isolation by Distance is a "relatively realistic” model
 Dispersal is well modeled (allows localized but also leptokurtic dispersal)

 "Continuous" IBD models allows the consideration of continuous spatial
distribution of individuals "™ no need to a priori define sub-populations/demes

» The inference method : the regression methods of Rousset (1997, 2000) is
well designed, precise and robust

» the relationship between Fg;/(1-F51) and the distance is easier to interpret in
terms of demographic parameters than Fstatistics alone (simple linear relationship)

* No assumptions on the shape of the dispersal (allows leptokurtic distributions)

» only valid for sampling at a local geographical scale (small distance assumption)
m less demographic and selective spatial heterogeneities

» The genetic markers : microsatellites are good highly informative markers

50



Why Do? inferences using the regression method
on IBD models seems to work so well ?

» The model : Isolation by Distance is a "relatively realistic” model

» The inference method : the regression methods of Rousset (1997, 2000) is
well designed, precise and robust

» The genetic markers : microsatellites are good highly informative markers

m Both the demo-genetic model, the inference method, the sampling strategy and
the genetic markers are important for the inference of demographic parameters to
be accurate, i.e. to obtain precise and robust estimation of local and present-time

demographic parameters

51



Why Do? inferences using the regression method
on IBD models seems to work so well ?

Quick interpretation of the robustness of the regression method to
mutational processes and past demographic changes using the
coalescent theory :

» small deme/sub-population sizes

* high migration rates = short coalescence times

« sampling at small geographical scale _

m short coalescence times (i.e. most of the coalescent tree is in a
recent past) decrease the influence of past factors acting on the
distribution of polymorphism, such as past mutation processes et
past demographic fluctuations

Note that this effect is even more pronounced for the "continuous" IBD model
because deme size is one individual and migration rates are very high (>0.3)

52



Extensions to classic isolation by distance models

1 — IBD within and bewteen two habitats or groups

Using IBD models to test for potential gene flow between populations of organisms
living in different habitats in sympatry (Rousset 1999)

Different habitats can be, for example :
» different hosts for a parasite
» agricultural vs natural populations

IBD within each habitat, but what could the signal of the differentiation
between the habitats tell us about gene flow between those habitats

% |'o |'o |’o |'o |'o |’o |'o |'o
o e S o e D 1
99—% %% % %% % %
e
99—% %% % % % % %
99—%%—"%"% % % % %
(9 o—Yo % % %%
: S ° ®
I o O S ) y*




Extensions to classic isolation by distance models

1 — IBD within and bewteen two habitats or groups

Using IBD models to test for potential gene flow between populations of organisms
living in different habitats in sympatry (Rousset 1999)

Assumption : IBD in at least one of the habitats

The theory showed that if there is enough gene flow between the two habitats
(m>0.001) then IBD should be observed between habitats, with a
“Intermediate” IBD pattern compared to IBD patterns within each habitat

if there is no gene flow between the two habitats (m<0.001) then the
differentiation between habitats should be independent of the distance

% |'o |'o |’o |'o |'o |’o |'o |'o
o e S o e D 1
99—% %% % %% % %
e

99—% %% % % % % %
99—%%—"%"% % % % %
(9 o—Yo % % %%

S | ®
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Extensions to classic isolation by distance models

1 — IBD within and between two habitats or groups

Ex: European Corn Borer (Ostrinia Nubilalis), a major pest for corn plantations

Native in Europe, introduced in North America




tensions to classic isolation by distance mod

1 — IBD within and between two habitats or groups

The European Corn Borer (Ostrinia Nubilalis) : -

naturaly feeds on mugwort (Asteraceae) in Europe




Extensions to classic isolation by distance models

1 — IBD within and between two habitats or groups

» GMO "Bt" maize plants are resistant to the European Corn Borer, but to manage
the evolution of resistance to the B. thuringiensis toxins in the pest, there is a need
to keep "refuge habitats" near the GMO plantations

» Refugia can theoretically be plant on which the insect can feed and reproduce,
however, to be efficient, there should be enough gene exchanges between pest
populations living on plantations and refuges

b Con @

. i g “® a’@:\-.
Pca o L Martel et al (2003,
(nie o Mor N Heredity) tested the
oY - ¢+ usefulness of using
2 o N “*  mugwort natural
Alor X . < R S populations as refuges



Extensions to classic isolation by distance models

1 — IBD within and between two habitats or groups

Isolation-by-distance Expectation :
8/1-8) No gene flow between habitats (m<0.01)
’ ; w differentiation between habitats

independent of geographic distance
What is observed :

 Within mugwort-feeding pops " slope is
0.0163 (significantly # 0) and Dg?=5 moths

 Within maize-feeding pops "™ slope is
2 0.0020. (not # 0) and Dg?=40 moths

1 * Between Maize & Mugwort-feeding pops
Figure 2 Regressions of 0/(1 - 6) against In (geographical dis- g S|0pe IS 00029, (nOt a O)

tances) (km) for populations collected on Artemisis owdearss (within
5

mugwort), on Zea mays (within makze) and between populations e Differentiation is a|WayS h|gher between

collectod on the two host plants (between-group). Regressions are

piven for all loct and for all loct except the M locus habltats than Wlthln eaCh habltat

¢ Between-groups @ Withun mugwort group

¢ Within masze group
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Extensions to classic isolation by distance models

1 — IBD within and between two habitats or groups

Isolation-by-distance

#11-8)

Ln distance

¢ Between-groups @ Wihun mugwort group

¢ Withun masze group

Figure 2 Regressions of 0/(1 - 6) against In (geographical dis-
tances) (km) tor ;\’lpul.\l:.v:‘n collected on Ariemisis .'u.'.QJ,'J (within
mugwort), on Zex mays (within maize) and between populations
collectod on the two host plants (between-group). Regressions are
given for all loct and for all loct except the Mg locus

Conclusions :

. Difference in Dg? between the two

host-plant groups probably due to
higher densities in maize-feeding
populations rather than differences in
dispersal

. there is clearly a strong barrier to gene

flow between mugwort and maize-
feeding populations of the European
corn borer

w natural mugwort populations should
not be used as refuges because it will
not limit evolution of resistance within
maize-feeding populations but only
within mugwort-feeding populations
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ssic isolation b

dian distance vs "least cost ¢

ectivity is often not homogeneous in space but strongly dep
eature " using euclidian distance may not be optimal

eers (Capreolus capreolus) in a patchy landscape (Coulon et al.

Fig. 1 Geographic locality of the study site . -4
(wooded patches are represented in grey) - e -~ - N
and sample points (black spots). Fabas w o ” T



Extensions to classic isolation by distance models

2 — euclidian distance vs "least cost distance™

ex : Roe deer population in a patchy landscape (Coulon et al. 2004)
the least cost distance is the trajectory that

maximizes the use of wooded corridors

. R =

Euclidian ’ e

distance s 0 L >
e g .\ .m
b) . :
3 -

<«——— Open land
Least cost &
distance
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Extensions to classic isolation by distance models

2 — euclidian distance vs "least cost distance™

ex : Roe deer population in a patchy landscape (Coulon et al. 2004)

Table 2 Correlations between genetic and (logarithmic) geo-
graphical distances for females and males roe deer. Values of
the statistics » for Mantel tests are given for each relationship
between genetic and geographical distances and the associated
probabilities (in brackets) were calculated by carrying out 10 000
permutations of lines or columns of one of the two half-matrices

Females Males
In Euclidean distance 0.019 -0.0001
(0.118) (0.5)
In least cost distance 0.031 0.003 S
(0.005)** (0.401)
**P < 0.01. ’ - - =

v' Better correlation between genetic differentiation 5 "
and least cost distance

v IBD is only significant for females when
considering the least cost distance




Extensions to classic isolation by distance models

2 — euclidian distance vs "least cost distance™

ex : Roe deer population in a patchy landscape (Coulon et al. 2004)

Females Males
In Euclidean distance 0.019 -0.0001

(0.118) (0.5)
In least cost distance 0.031 0.003

(0.005)** (0.401)

“P < 0.01. Y N

Limits and problems:

v What cost should we attribute to different

landscape features? t - g :
Sl "L L

v Inference of the cost from genetic data may be sp 2NN ;-,,t

really difficult (too many parameters) b . :

v Does a better correlation really means a better
model under IBD models?




Extensions to classic isolation by distance models

3 — euclidian distance vs resistance distance

Isolation by resistance (McRae 2006 Evolution) : analogy with circuit theory

potential paths across the
whole landscape surface

Not a single path but all

i . This "distance" is defined as

| the effective resistance that
would oppose a conductive
material displaying a topology
similar to that of the study

. area.

o /
< : |
N L—}—ww«
- ,’

S
o AN——W ¢ v
!
BEECHA

0
% .
S (e
2

>

euclidian distance \

Least cost distance

Resistance surface
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Extensions to classic isolation by distance models

3 — euclidian distance vs resistance distance

Isolation by resistance (McRae 2006 Evolution)

A 2-dimensional IBD 03 r
R2=0.24

P =0.0001
02 r 0

Fsr/(1-Fgy)

0.1

.
.
- °
-
H
-
&
. [ "
ol 1. AN? hE
22 24 26 28 3 32 34 36
.

Log4o(geographic distance)

PRt

B Least-cost path 03 ¢
R2=037

P =0.0001
02 . O O

w
0.1 F
.
. 0
o' . 0
.

Least-cost distance (km)

1/(1-Fgy)

e -
$°e &
.o

w33 S

.
. .
) " .
1000 2000 3000 4000

M i

use of Euclidean or least cost distances

C

Circuit theory

[ R2-068
P = 0.0001

1 2 3 4 5 6 7 8 9
Resistance distance

Using the resistance distance might help to reveal
patterns of IBD in heterogeneous landscapes that would not have appeared with the

However, as for the least cost methods, it is not straightforward to assign a resistance
value for each of the different landscape features
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vation genetics of fo

Molecular Ecology (2004) 13, 259269 doi: 10.1046/).1365-294X.2003.02056.x

Limited effect of anthropogenic habitat fragmentation on
molecular diversity in a rain forest skink, Gnypetoscincus
queenslandiae

JOANNA SUMNER,*TIM JESSOP,t DAVID PAETKAUfand CRAIG MORITZS§

*Department of Zoology and Entomology and the Rainforest CRC, University of Queensland, St Lucia, Qld 4072, Australia, tCenter
for Reproduction of Endangered Species, Zoological Society of San Diego, San Diego, CA, 92112, USA, $Wildlife Genetics International,
Box 274, Nelson, BC, V1L 5P9, Canada, §Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA
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ase in N, H, detected with 9
es...no signs of bottlenecks with

But strong isolation
distance Do?=7 [5.5

Modocular Ecodogy (2000) 90, 19171927

‘Neighbourhood’size, dispersal and density estimates in the
prickly forest skink (Gnypetoscincus queenslandiae) using
individual genetic and demographic methods
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etic diversity ?

in N,, H, detected with 9
.d.no signs of bottlenecks with
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Molecular Ecology (2006) 15, 3601-3615 dok: 1001111/ 13635-294X 2006, 00046.x

Genetics of recent habitat contraction and reduction in
population size: does isolation by distance matter?

RAPHAEL LEBLOIS*t#1 ARNAUD ESTOUPtand REJANE STREIFF#
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Bottleneck/Reduction in population size under
WF vs. IBD

WEF population IBD population

Reduction in -

population size




Simulation sampling design
30 individuals, 10 loci

2 sampling designs for IBD:

AR [ R ) [ S
B A ARE (S IS S| SaS iR
Local sample Scaled sample
= at adajacent nodes = on the entire

population surface



Control (i.e. without bottleneck, size=Ni)

relative allele number

100 F

(%)
al (o)) ~ Qo (de)
o o o o o
1 1

=N
o
1

W
o

\ large population Ni=40,000; Nf=400
4\

{ —A—0*=4

AN

- WF

Local sample (LS)
—a—0 %=1
——0 2=1/3, stepping stone

0 a0 100 150 200 250

generations

Number of generations
between bottleneck and
sampling times



Results (2) : nA in bottlenecked

pobulations

100 small population Ni=4,900; Nf=49
_ ) —a—WF
S 80 —A—02=4
g —a—02=1 .
z ;\:70 . ——0 2=1/3, stepping stone
<. Number of alleles :
% 50 -
. Influence of IBD is strong

30 : / .

° - “enewios” "] |nfluence of the sampling design is

substantial in large population
—->decrease the differences WF / IBD

relative allele number

1:2 '\ large population Ni=40,000; Nf=400

80 - Ny
N\,

70 { -

60 i s
—a—WF ,

501 —A—02=4 &

—a—02=1
40

(%)

o 2=1/3, stepping stone

0 0 100 150 200 x| Local sample (LS)

generations

30




Implications to real data set analyses:
eX: Conservation genetics of forest skinks
Documented habitat reduction, 10 skink Forest skink N

generations ago
— reduced genetic diversity ?

No decrease in N,, H, detected with 9
microsatellites...no S|gns of bottlenecks

Effect of spatial structure (IBD) :

Reduction in genetic diversity

» Genetic diversity (N,, H.) is only weakly
reduced under IBD after a bottleneck

+ No bottleneck detection under IBD
(BOTTLENECK Cornuet & Luikart 1996, M
Garza & Williamson 1996)

0 50 100 150 200 + many false expansion signals!
generations after bottleneck

Importance of the spatial features and localized dispersal



Table 2 Summary of skink population data set

Population name

3

Size

No.

A

Hy

He

M

Bot P value

Exp P value

SMM

GSM

SMM

GSM

Souita Falls (F1)
Maalan Road (F2)
Waltham (F3)

Pat Daley Park (F4)
Nose Ring (F5)
Whiteing Road (F6)
Millaa Millaa Falls (F7)
Brotherton(C1)
Cross-eye(C2)

Mount Father Clancy(C3)
Reynolds(C4)

Massey Creek(C5)

65.06
NA
NA
NA
NA
NA

NoNONTTT T o

101-384
124-472
133-507
300-1144
1217-4645
18266972
3273-12497
>> 40 000
>> 40 000
>> 40 000
>> 40 000
>> 40 000

25
42
27
18
29

27
28
30
32
28
94

7.35
744
7.75
7.39
9.31
8.77
7.88
8.26
8.00
8.77
9.18
7.95

0.70
0.63
0.68
0.63
0.70
0.71
0.66
0.69
0.69
0.69
0.66
0.62

0.68
0.66
0.67
0.63
0.68
0.69
0.65
0.68
0.70
0.72
0.71
0.62

0.458
0.549
0.496
0.406
0.524
0.522
0.465
0.523
0.526
0.575
0.566
0.580

0.99
1.00
0.99
1.00
1.00
1.00
1.00
0.99
1.00
1.00
1.00
1.00

0.85
0.99
0.90
0.99
0.99
0.99
1.00
0.98
1.00
1.00
1.00
1.00

0.007**
0.001**
0.007**
0.002**
0.005**
0.005**
0.001**
0.019*
0.001**
0.002**
0.002**
0.001**

0.18
0.01**
0.13
0.01**
0.007**
0.01**
0.003**
0.065
0.005**
0.005**
0.002**
0.002**

For each population, habitat type (F, fragmented and C, continuous, i.e. nonfragmented) is reported, as well as its surface (in ha, for
fragments only), its approximate size in term of number of individuals, the number of individuals sampled (No.), the number of alleles A
(adjusted for a sample size of 30 individuals using Ewens 1972’s sampling formula), the gene diversity Hy, the observed heterozygosity Hy,
and the value of M statistics. The probability of rejecting the hypothesis of equilibrium in favour of a population size reduction (Bot P value)
or expansion (Exp P value) was computed using the software BoTTLENECK (Piry ef al. 1999) and assuming the SMM or the GSM (with a

variance of (0.36) as mutation model.

ial features




Box 1: Using isolation by-distance pattems to perform spatially contineous assigament ’
Random genens i ender [0 nends 15 prodice smooth sparial variations of alide trequences. bnbermed maps of
alcle frequences caa be wsed 10 portorm geographically explicht individual assigaements. Wasser of 3l 0040 and
w.-aumwawmmmmwummmm"
origin of & DNA sassple by comrparing i allcio with otinated alicle Soquencion. Rather than siergply assognisg
Individuals % peodcfisod populations, the method can, In principle. asign ndividuals 0 asy spatial kcation |
whane inferred alicke foquencies best explairs B genotype of the sample. Using this saethod, Wisser of of, Q000) |
shosond that & large shipement of contrabend ivory coginued from & nierow rogion cestred on Zambia. The socw
racy of the assigament depends on the accuracy of the alele frequoncy map lmplicitly geverated during e infer-
mthmmaﬁmdhmudeMMwa
darscerire 3 given segion ]
Pope o ol Q0T found that e individual sputial sgaenens gosctatod by the method proposed by Wasser
of Al Q004 could give aenbigeous sesuls (marry possiiie locations). This might soult feoen (0 & ladh of dfferens
anon in the data: O encertainty sbout sl froquendcies due in particular 10 the sse of data with individuals con
tocowly sampled over spece; (M) departw of dats Mo the snderying sathtical model OV) |
overparametrization commpared with sample stne; (v) MOMC convergonce flaw. Fope of . Q0007 devined & simpler
method Basnd on the same rationale. They used their mothod 1o compare the movement of ndivideal badgers
before and akor & cddling operation performed ia the context of bovine suberculonts (Mycabecteriam booir) contonl
Even Shough they showod that e badigers soved. oo average. forfher post: than precull, it yet remaise w0 be
socn hose accusate Pope ¢f als method i in the assigroment of indivaduals 50 spocific goographic looalithes |
I & soudy in Demrues gpenetics, moddling alicke oquencies & & linoar fuscion of spuial coordinates as e syn
optic scale, Amos & Manica (008) were capable of asigring individuals with s accuracy of 1200 mikes. Novers- |
bro & Swphera Q00K proposed 3 methad based om & FCA suitable for large SN data that prodict spatial origin
Brocgh 2 Enear segromsion on the fing two principal components. !

) Magp of Alrica shosiag the collection sites divided Ino Sve reghons: West Afiics (cyan), Central forest (oedd, and
Central (Hack), South (groen) and East (Huc) savarna. (N Estimated locations of clephunt Saue and faccal seangples
froen across Alfrics when asdgaenents are allowed %0 vary anywhere withis the cepbants’ range. All Sooe and scat
sargples {n = 390 weee sucomadully amplifiod at seven or more Jocl. Sempling locations are indicated by & cross and
are oolour coded acoording 10 actual broad peographls reghon of origin: West Africa, Central forest, and Contral,
Sou and Fast savanaa [ookour coded s Ia Q0] Assigred location of each individeal sample i shown by a crcle and
s cobour coded acconding 1o s actual reghon of origin The choser each circle is %0 cromses of The same colour, the more
Fccurate bs Dat individual's assignament (Agures and capion reprinted from Wasser of & 2004},




ssignment results for 37 tusks from a large seiz
apore. Circles represent the estimated origi
ks analyzed. Plus signs coincide with t
above. [from Wasser et al. 200




