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1.   Reminder : main coalescence principles 

2.   Simulating coalescent trees and 
 polymorphism data 

3.   Likelihood-based inferences 

4.   Maximum likelihood and Isolation by 
 Distance 

Likelihood-based 
demographic inference 
using the coalescent 
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In the coalescent theory, we look at the genealogy of a 
sample of genes going backward in time until the most 
recent common ancestor (MRCA) 
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Population genealogy            Sample genealogy 
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→ a new approach in population genetics : 

!  Classical approach   Coalescent approach 

  • Population      • Sample 

  • Gene frequencies     • Gene Genealogies 

  • Forward in time      • backward in time 

Population genealogy          Sample genealogy          coalescent tree 
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Coalescence of 2 genes in one generation 

in a haploid population of size N 

Present 

Past 

t=0 

t=1 

Probability of coalescence of 2 genes in one generation 
= probability that the two genes have a common parental gene 
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Coalescence of 2 genes in 2 generations 

in a haploid population of size N 

Present 

Past 

t=0 
t=1 

t=2 

(Prob. that the 2 gene do not coalesce at t=1) 
 *(Prob. that the 2 gene coalesce at t=2) 
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Coalescence of two genes in t generations 

in a haploid population of size N 

Past 

Present 

…
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P(T2 =  t) =   1 "  1
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N

(Prob. that the 2 gene do not coalesce in the first t-1 generations) 
 *(Prob. that the 2 gene coalesce at t) 
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for x << 1   (1-x)t ! e-xt 

The discret geometric distribution can be approximated by an 
continuous exponential distribution for large N 

! 

P(T2 =  t) =   1 "  1
N
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t "  1 1
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N

e"Nt

Coalescence times follow an exponential 
ditribution of rate N (it is also its expectation) 

T2 

T3 

Coalescence of two genes in t generations 

in a haploid population of size N 
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Assumption: no multiple coalescence for large N 

(j
2) = j*(j - 1)/2 gene pairs can coalesce with probability 1/N 

coalescence times for a sample of j genes/lineages follow a 
geometric distribution with parameter j*(j-1)/2N, and can be 
approximated by an exponential distribution with expectation 
2N / (j* (j -1)) 

! 

Pr(two genes among j coalesce in one generation) =  j( j -1)
2N

! 

Pr(Tj = t) = (1" j( j "1)
2N

)t"1( j( j "1)
2N

) # j( j "1)
2N

 e
" j( j -1)

2N
t

Coalescence of j genes in t generations 

in a haploid population of size N 
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T4 

T3 

T2 

Coalescence of j genes in t generations 

in a haploid population of size N 

the larger the sample size or lineage number is, 
the larger the expected coalescence times are 

Coalescence times have high variance :  
two independent loci could show very different 
coalescence times, and thus very different 
coalescent trees (genealogies) 
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Coalescence en t générations de j lignées 

the larger the sample size or lineage number is, 
the larger the expected coalescence times are 

Coalescence times have high variance :  
two independent loci could show very different 
coalescence times, and thus very different 
coalescent trees (genealogies) 
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TMRCA : length of the coalescent trees 

TMRCA = Time to the Most Recent Common Ancestor  
   = Time of the last node (coalescence) of the tree 
   = Tree length 

! 

E[TMRCA] = E[Ti]
i=2

j

" =
2N
i(i #1)i=2

j

"

                 = 2N $ ( 1
i #1

#
1
i
)

i=2

j

"

                  = 2N(1# 1
j
)

!  TMRCA expectation tends to 2N for large samples 
!  TMRCA of a relatively small sample is close the TMRCA of 
the whole population 
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coalescent trees and mutations 

Under neutrality assumption, mutations are independent of the 
genealogy, because genealogical process strictly depends on 
demographic parameters 

First, genealogies are build given the demographic parameters 
considered (e.g. N), 

 Then mutation are added a 
posteriori on each branch of the 
genealogy, from MRCA to the leaves 

We thus obtain polymorphism data 
under the demographic and 
mutational model considered 
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coalescent trees and mutations 

The number of mutations on each branch is a function of the 
mutation rate of the genetic marker (!) and the branch length (t).  
! = mean number of mutation per locus per generation. 
e.g. 5.10-4 for microsatellites, 10-7 per nucleotide for DNA sequences 

 For a branch of length t, the number 
of mutation thus follows a binomial 
distribution with parameters (",t). 
Often approximated by a Poisson 
distribution with parameter ("*t). 

! 

Pr(k mut t) =
k(µt) e " µt

k!



15 

Arbre de coalescence et mutations 

Different mutational models for the different genetic markers, e.g. :  

!  For DNA sequences : mutation matrix for different nucleotide 
transition rates (Pr[A"T], Pr[A"C], Pr[T"G], etc…) 

!  For SNPs : Pr(Ancestral "Derived)=", Pr(Anc. "Der.)=0 

!  For microsatellites :stepwise models 

SMM (Stepwise mutation 
model): each mutation add or 
remove a motif to the parental 
allele 
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#  The coalescent is a powerful probabilistic model for gene 
genealogies 

The genealogy of a population genetic sample, and more generally 
its evolutionary history, is often unknown and cannot be repeated 
! the coalescent allows to take this unknown history into account 

#  The coalescent often simplifies the analyses of stochastic 
population genetic models and their interpretation 

Genetic data polymorphism largely reflects the underlying genealogy 
⇒ the coalescent greatly facilitate the analysis of the observed 
genetic variability and the understanding of evolutionary 
processes that shaped the observed genetic polymorphism. 

Main advantages of the coalescent 
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#  The coalescent allows extremely efficient simulations of the 
expected genetic variability under various demo-genetic models 
(sample vs. entire population) 

#   The coalescent allows the development of powerful methods for 
the inference of populational evolutionary parameters (genetic, 
demographic, reproductive,…), some of those methods uses all 
the information contained in the genetic data (likelihood-based 
methods) 

Main advantages of the coalescent 
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Trees and polymorphism data simulation 

•  reminder : 

! For neutral markers, the number of offspring is 
independent of the genetic types of their parents 

 " Demographic processes are thus independent of 
mutational processes 

! Simulation of polymorphism data can thus be done in two 
steps : 

(1) Tree simulation : topology and branch length 

(2)  Addition of mutations on the tree 
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 Two main methods : 

#  Coalescent continuous approximations 
very fast but approximations only valid for large population sizes, weak 
mutation and migration rates and "simple" demographic models 

#  Generation by generation 
 Ok for all demograophic and mutational models but relatively slow 

RAPIDITY :   
Continuous approximations > Generation by generation  
FLEXIBILITY :   
Generation by generation > Continuous approximations 

Coalescent tree simulation 
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•  Tree representation 

Gene 2 
= 

"node" 2 

Gene 4 
=  

"node" 4 

Gene 5 
= 

 "node" 5 

Gene 3 
=  

"node" 3 

"node" 9 
= MRCA of the sample 

Gene 1 
= 

"node" 1 

"node" 6 

"node" 7 
= 

MRCA of 4,5 

"node" 8 

lineage 1 
= 

branch 1 

lineage 6 
= 

branch 6 

lineage 8 
= 

branch 8 

Past 

Present 

Coalescent tree simulation 
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•  very simple and exact (without any approximations): 

!  Go backward in time generation by generation 

!  At each generation, we stochastically draw potential 
events affecting the genealogy  

  e.g. coalescence, migration, recombinaison 

!  Stop at the most recent common ancestor of all sampled 
genes = MRCA 

Coalescent tree simulation 
Generation par generation 
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•  Toy example :  
!  4 gene sample 
!  single neutral locus 
! panmictic haploid population of size N=10  

Coalescent tree simulation 
Generation par generation 
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•  Example : 4 genes, neutral, 1 pop N=10  

nodes / lineages 
numbering 

1 2 3 4 

random number 
between 1 and N 
for each lineage 
lineage starting 
generation 

0 0 0 0 

1 2 3 4 
Gn=0 

Coalescent tree simulation 
Generation par generation 



24 

nodes / lineages 
numbering 

1 2 3 4 

random number 
between 1 and N 
for each lineage 
lineage starting 
generation 

0 0 0 0 

Prob for a coalescence in j 
lineages in one generation 

=j(j-1)/2N 

= probability of drawing 2 
identical integers in j uniform 
drawings between 1 and N 

Gn=0 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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Probability of a coalescence in j lineages in one generation 

=j(j-1)/2N 

= probability of drawing 2 identical integers in j uniform 
drawings between 1 and N 

in other terms, we randomly and uniformly draw a parent for 
each gene/lineage among the N potential parents (stable 
population size) 

Genes/lineages sharing the same parent coalesce 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

1 2 3 4 

random number 
between 1 and N 
for each lineage 

2 6 5 6 

lineage starting 
generation 

0 0 0 0 

1 2 3 4 
Gn=1 

Coalescence at generation 1 
of nodes/lineages 3 and 4 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

1 3 5 

random number 
between 1 and N 
for each lineage 

2 5 6 

lineage starting 
generation 

0 0 1 

1 2 3 4 
Gn=1 

Coalescence at generation 1 
of nodes/lineages 3 and 4 

new node  5  

5 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

1 3 5 

random number 
between 1 and N 
for each lineage 

3 1 7 

lineage starting 
generation 

0 0 1 

1 2 3 4 
Gn=2 

nothing happened at 
generation 2 

5 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

1 3 5 

random number 
between 1 and N 
for each lineage 

7 4 8 

lineage starting 
generation 

0 0 1 

1 2 3 4 
Gn=3 

nothing happened at 
generation 3 

5 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

1 3 5 

random number 
between 1 and N 
for each lineage 

5 2 5 

lineage starting 
generation 

0 0 1 

1 2 3 4 
Gn=4 

Coalescence at generation 4 
of nodes/lineages 1 and 5 

5 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

3 6 

random number 
between 1 and N 
for each lineage 

2 5 

lineage starting 
generation 

0 5 

1 2 3 4 
Gn=4 

Coalescence at generation 4 
of nodes/lineages 1 and 5 

new node 6 

5 

6 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

3 6 

random number 
between 1 and N 
for each lineage 

3 9 

lineage starting 
generation 

0 5 

1 2 3 4 
Gn=5 

nothing at 
generation 5,6,… 

5 

6 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  



33 

nodes / lineages 
numbering 

3 6 

random number 
between 1 and N 
for each lineage 

7 7 

lineage starting 
generation 

0 5 

Gn=20 

Coalescence at  

generation 20 of the  

two last lineages 3 and 6 

1 2 3 4 

5 

6 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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nodes / lineages 
numbering 

3 6 

random number 
between 1 and N 
for each lineage 

7 7 

lineage starting 
generation 

0 5 

Gn=20 

Coalescence at  

generation 20 of the  

two last lineages 3 and 6 

new node 7 = MRCA of 
the sample 

1 2 3 4 

5 

6 

7 

Coalescent tree simulation 
Generation par generation 

•  Example : 4 genes, neutral, 1 pop N=10  
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The coalescence tree (topology and 
branch lengths) is build. 

It is a stochastic process, so if we build 
many trees, they will all be different 
but share some common properties. 

To get polymorphism data, we need to 
add mutations on the tree…  

1 2 3 4 

5 

6 

7 

Gn 

20 

4 

1 

0 

Coalescent tree simulation 
Generation par generation 
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•  Principle: 2 successive steps 

(1)  The topology of the tree is build by randomly 
coalescing lineages 

(2) Branch length are simulated using expected 
coalescence times between two coalescence 
events 

Coalescent tree simulation 
Hudson continuous approximations 
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•  Example : 4 genes, neutral, 1 pop N=10 

(1)  The topology of the tree is build by randomly 
coalescing lineages 

1st coalescence = random draw of 2 lineages among the 4 
" lineages 2 and 4 coalesce to give lineage 5 

1 2 3 4 

1 5 3 

Coalescent tree simulation 
Hudson continuous approximations 
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1 2 3 4 

1 5 3 

6 3 

Coalescent tree simulation 
Hudson continuous approximations 

•  Example : 4 genes, neutral, 1 pop N=10 

(1)  The topology of the tree is build by randomly 
coalescing lineages 

2d coalescence = random draw of 2 lineages among the 3 
lineages left " lineages 1 and 5 coalesce to give 
lineage 6 
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1 2 3 4 

1 5 3 

6 3 

7 

Coalescent tree simulation 
Hudson continuous approximations 

•  Example : 4 genes, neutral, 1 pop N=10 

(1)  The topology of the tree is build by randomly 
coalescing lineages 

3d  and last coalescence = the last 2 lineages 6 and 3 
coalesce to give lineage 7, the MRCA 
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•  Example : 4 genes, neutral, 1 pop N=10 
(1) Topology is build 

1 2 3 4 

1 5 3 

6 3 

7 

Coalescent tree simulation 
Hudson continuous approximations 
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•  Example : 4 genes, neutral, 1 pop N=10 
(2) Branch length simulation 

there are 3 branch lengths to simulate T4, T3, T2 

1 2 3 4 

1 5 3 

6 3 

7 T2 

T3 

T4 

Coalescent tree simulation 
Hudson continuous approximations 
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•  Example : 4 genes, neutral, 1 pop N=10 

3 branch lengths to simulate T4, T3, T2 

T4 drawn from an exponential distribution 
with parameter (expectation) 
 j(j-1) /2N=4*3/2*10 

(algorithms to draw exponential deviates are availlables) 
1 2 3 4 

1 5 3 

6 3 

7 

! 

Pr(Tj = k) =
j( j "1)

2N
 e

- j( j -1)
2N

k

T2 

T3 

T4 

Coalescent tree simulation 
Hudson continuous approximations 
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•  Example : 4 genes, neutral, 1 pop N=10 

3 branch lengths to simulate T4, T3, T2 

Ex: 
T4 drawn from exp.  (j(j-1) /2N=4*3/2*10 ) " 1,2 

T3 drawn from exp. (3*2/2*10) "  2,6 
T2 drawn from exp. (2*1/2*10) "  15,7 

1 2 3 4 

1 5 3 

6 3 

7 T2 

T3 

T4 

Coalescent tree simulation 
Hudson continuous approximations 
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Example : 4 genes, neutral, 1 pop N=10 

We then have the topology 
and branch length, which  
correspond to the total 
coalescent tree 

Coalescence 
times distributions  
must be known  
under the demographic model considered! 

1 2 3 4 

1 5 3 

6 3 

7 

T2=15,7 -> 16 

T3=2,6 -> 3 

T4=1,2 -> 1 

Gn 

20 

4 

1 

0 

Coalescent tree simulation 
Hudson continuous approximations 
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1 2 3 4 

1 5 3 

6 3 

7 

Gn 

20 

4 

1 

0 

General principle (reminder) : 

Mutations are distributed on the different 
branches from the MRAC to the leaves 
as a function of the mutation rate ! 

Each mutation induce a change in the 
allelic/nucleotidic state of the 
descending node 

This genetic state change is made 
according to the mutational model 
considered, which may reflect real 
mutational processes of some genetic 
markers 

Polymorphism data simulation starting 
from a coalescent tree 
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1 2 3 4 

1 5 3 

6 3 

7 

Gn 

20 

4 

1 

0 

On a branch of length  t, the number of 
mutation follow a binomial with 
parameters (!,t) 

Approximated by a Poisson distribution 
with parameter (!*t) 

! 

Pr(k mut t) =
k(µt) e " µt

k!

Polymorphism data simulation starting 
from a coalescent tree 
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Gn 

20 

4 

1 

0 

Example for microsatellites under a 
SMM : gain or loss of a motif (repeat) for 
each mutation 

addition of mutation numbers on each 
branch following the Poisson distribution 

! 

Pr(k mut t) =
k(µt) e " µt

k!

1 2 3 4 

5 

6 

7 

Polymorphism data simulation starting 
from a coalescent tree 
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Gn 

20 

4 

1 

0 

Example for microsatellites under a 
SMM : gain or loss (p=0.5) of a motif 
(repeat) for each mutation 

Choice of the MRCA type (random): 20 

node 7 to 6 : one time ±1  " 21 

node 6 to 1 : one time ±1  " 22 

node 6 to 5 : 0 time ±1  " 21 

node 5 to 2 : one time ±1  " 20 

node 5 to 4 : 0 time ±1  " 21 

20 

22    20   21 

20 

1 2 3 4 

5 

6 

7 

20 

Polymorphism data simulation starting 
from a coalescent tree 



1 2 3 4 

5 

6 

7 

Gn 

20 

4 

1 

0 

Example for microsatellites under a 
SMM : gain or loss (p=0.5) of a motif 
(repeat) for each mutation 

node 7 to 3 : 3 times ±1  " 19 

A polymorphism sample of 4 genes is 
obtained with allelic states 19, 20, 21, 22 

20 

22    20   21  19 

20 

Polymorphism data simulation starting 
from a coalescent tree 
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Gn 

20 

4 

1 

0 

Example on DNA sequence markers ( 5 bp). 

Choice of the ancestral sequence (ATTGC) 

independent mutation on each site  

7 to 6 : 1 mut on site 1 " TTTGC 

6 to 1 : 1 mut on site 3 " TTAGC 

5 to 2 : 1 mut on site 5 " TTTGG 

7 to 3 : 1 mut on each site 2,3,4 " AAACC  
1 2 3 4 

5 

6 

7 

1 

3 
2 

3 

4 

5 

Polymorphism data simulation starting 
from a coalescent tree 
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Gn 

20 

4 

1 

0 

Example on DNA sequence markers ( 5 bp). 

Choice of the ancestral sequence (ATTGC) 

independent mutation on each site  

The polymorphism sample is then composed of 
4 different sequences : 

TTAGC,TTTGG,TTTGC,AAACC  

1 2 3 4 

5 

6 

7 

1 

3 
2 

3 

4 

5 

Polymorphism data simulation starting 
from a coalescent tree 



52 

what can we do with those coalescent trees 
and genetic data simulation? 

•  Exploratory approaches : to study the effects of various 
parameters on the shape of coalescent trees and on 
the distribution of polymorphism in a sample 

Ex: past 
demography 
effects 

growing 
"star like" 

contracting 
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•  Exploratory approach : demographic effects 
•  growing population size (e.g. invasion of a new habitat) 
There are more ancient coalescences (small N) than recent 

coalescences (large N), coalescent trees thus have longer 
terminal branches 

A population size growth induces an excess of low frequency 
alleles (rare alleles) 

what can we do with those coalescent trees 
and genetic data simulation? 
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•  Exploratory approach : demographic effects 
•  population size contraction (e.g. threatened species) 
There are more recent coalescences (small N) than ancient 

coalescences (large N), coalescent trees thus have shorter 
terminal branches 

A contraction induces a deficit of low frequency alleles 

what can we do with those coalescent trees 
and genetic data simulation? 
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•  Exploratory approach : to study the effects of various 
parameters on the shape of coalescent trees, on the 
distribution of polymorphism in a sample and on various 
sumary statistics computed on a genetic sample (e.g. He, 
FST,…) 

•  Simulation tests : to create simulated data sets to test 
the precision and robustness of genetic data analysis 
methods 

•  Inferential approach : to estimate populational 
evolutionary parameters (pop sizes, dispersal, 
demographic history) from polymorphism data 

what can we do with those coalescent trees 
and genetic data simulation? 
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•  Inferential approaches are based on the modeling of 
population genetic processes. Each population genetic 
model is characterized by a set of demographic and 
genetic parameters P 

•  The aim is to infer those parameters from a 
polymorphism data set (genetic sample) 

•  The genetic sample is then considered as the 
realization ("output") of a stochastic process defined by 
the demo-genetic model 

Demographic inference under the coalescent 
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•  First, compute or estimate the probability Pr(D ¦P*) of 
observing the data D given some parameter values P*, 
it is the likelihood :  L(P* ¦ D )=Pr(D ¦ P* ) 

•   Second, find the set of parameter values that maximize 
this probability of observing the data (maximum 
likelihood method) 

Demographic inference under the coalescent 
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•  Maximum likelihood method 

58 

 !!   many parameters " large parameter space to explore   !! 

PML =  maximum likelihood 
 estimate 

P 

L 

P2 
P1 

L 
{P1,P2} ML 

Demographic inference under the coalescent 



59 

•  Problem : Most of the time, the likelihood Pr(D|P) of a 
genetic sample cannot be computed directly because 
there is no explicite mathematical expression 

•  However, the probability Pr(D|P,Gi) of observing the 
data D given a specific genealogy Gi and the parameter 
values P can be computed. 

•  then we take the sum of all genealogy-specific 
likelihoods on the whole genealogical space, weighted 
by the probability of the genealogy given the 
parameters :  

! 

L(P D) = Pr(DG;P)Pr(GP)
G
" dG

Demographic inference under the coalescent 
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•  The likelhood can be written as the sum of  Pr(D|P,Gi) over 
the genealogical space (all possible genealogies) : 

•  Genealogies are nuisance parameters (or missing data), 
they are important for the computation of the likelihood but 
there is no interest in estimating them 

very different from the phylogenetic approaches 

! 

L(P D) = Pr(DG;P)Pr(GP)
G
" dG

Coalescent theory 
demographic parameters 

mutational parameters 

Demographic inference under the coalescent 
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! 

L(P D) = Pr(DG;P)Pr(GP)
G
" dG

Sum over all possible genealogies 

    ⇒ usually untractable !!! 

! 

L(P D) = Epr(G |P ) Pr(DG;P)[ ] " 1K Pr(DGk;P)
k=1

K

#

Monte Carlo simulations are used : a large number K of 
genealogies are simulated according to Pr(G|P) and the 
mean over those simulations is taken as the expectation of  
Pr(D|G;P) : 

simulation of many genealogies is necessary to get a good 
estimation of the likelihood 

Demographic inference under the coalescent 
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! 

L(P D) = Epr(G |P ) Pr(DG;P)[ ] " 1K Pr(DGk;P)
k=1

K

#

Monte Carlo simulations are often not very efficient because 
there are too many genealogies giving extremely low 
probabilities of observing the data, more efficient algorithms 
are used to explore the genealogical space and focuss on 
genealogies well suppported by the data. 

Demographic inference under the coalescent 
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More efficient algorithms :  

•  IS : Importance Sampling 

•  MCMC : Monte Carlo Markov chains associated with 
Metropolis-Hastings algorithm  

allows better exploration of the genealogies proportionnaly to 
their probability of explaining the data P(D|P;G). 

Demographic inference under the coalescent 
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• Probability of a genealogy given the parameters of the 
demographic model Pr(Gi|P) can be computed from the 
continuous time approximations (cf. Hudson approximations to 
construct coalescent trees) 

•  then the probability of the data given a genealogy and 
mutational parameters Pr(D|Gi,P) can be easily computed 
from the mutation model parameters, the mutation rate and 
the Poison distribution of mutations. 

• From this, an efficient algorithm to explore the genealogical 
and the parameter spaces should allows the inference of the 
likelihood over the spaces. 

Demographic inference under the coalescent
the approach of Felsenstein et al. (MCMC) 
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• Probability of a genealogy given the parameters of the 
demographic model ( N, or {Ni ,mij } if structured populations)  

example for a unique panmictic population 

! 

Pr(GP) =
j" ( j" #1)

4N
 e

j" ( j" #1)
4N

k"
$ 

% 

& 
& 
& 

' 

( 

) 
) 
) "=1

TMRCA

*

Product over all demographic 
events (coalescence or 
migration) affecting the  
genealogy 

lineage number before the 
event 

Time interval between this event and the 
previous one 

Demographic inference under the coalescent
the approach of Felsenstein et al. (MCMC) 
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Time intervals 
between events 
(coa, mut, mig) 

coa 

mut 

mig 
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• Probability of a genealogy given the parameters of the 
demographic model  

• Probability of the sample given the genealogy and mutational 
parameters (mutation rate µ, Mmut mutation matrix) 

! 

Pr(DG) = Mmut( )ib (µLb )ib

ib!
 eµLb" 

# 
$ 

% 

& 
' 

b=1

B

(

Product over all tree 
branches 

mutation number on 
branch b length of 

branch b 
Poisson probability of getting  ib 
mutations on a time interval Lb 

Demographic inference under the coalescent
the approach of Felsenstein et al. (MCMC) 
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• Probability of a genealogy given the parameters of the 
demographic model  

• Probability of the sample given the genealogy and mutational 
parameters  

• by definition 

Demographic inference under the coalescent
the approach of Felsenstein et al. (MCMC) 
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It is a very complexe problem because of the large genealogical 
and parameter spaces to explore 

more parameters  more complexe genealogies 

Models with more parameters will need more computation times or 
more efficient algorithms to explore the 2 spaces 

" better to always try to consider simple but robust models 

Demographic inference under the coalescent
the approach of Felsenstein et al. (MCMC) 



Metropolis-Hastings algorithm  
for the parameter space 

(1) start from a point (vector of parameter values, ") 

(2) propose a change in the parameter space  
 "' from the proposal distribution q(" # "') 

(3) accept the change with probability 

(4) go back to (1)   

! 

h =min 1,L("';D)
L(";D)

P("')
P(")

q("'#")
q("#"')

$ 

% 
& 

' 

( 
) 

This algorithm ensure that the parameter space is explored  
proportionnaly to the likelihood 



Metropolis-Hastings algorithm :  
an efficient exploration of the space 
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!  Demographic model : one population with variable size
 Population contraction or expansion 

3+1 parameters N0, N1 et tg (+ !) to be estimated using 
a MCMC Metropolis-Hastings algorithm 

One example : MsVar
(Beaumont 1999) 

!"#$%

!&"''$%

()$*$+,%(&*,%

-.%/%-0%

-
0%

,1%2"+%%1$+$)&34+*5%

-.%6%
-0%

7&#8'"+1%
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•  Monte Carlo Markov chains simulation using the 
Metropolis-Hastings algorithm (MCMC) 

!  To explore the genealogy space 

!  and the parameter space 

One example : MsVar
(Beaumont 1999) 
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•  Monte Carlo Markov chains simulation (MCMC) 

!  To explore the genealogies, we then build a new genealogy 
by a "partial deletion-reconstruction" algorithm from the 
current one : 

One example : MsVar
(Beaumont 1999) 
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•  Monte Carlo Markov chains simulation (MCMC) 

!  To explore the genealogies, we then build a new genealogy 
by a "partial deletion-reconstruction" algorithm from the 
current one : 

potential problem : Trees are correlated… 

One example : MsVar
(Beaumont 1999) 



76 

•  Monte Carlo Markov chains simulation (MCMC) 

!  To explore the genealogies, a new genealogy is build by a 
"partial deletion-reconstruction" algorithm from the current 
genealogy 

!  in parallel, the parameter space will be explored by 
modifying parameter values in the MCMC  

"  at each step of the MCMC: 

either the genealogy is modified,  

or a parameter value is modified 

One example : MsVar
(Beaumont 1999) 

Results presented by Renaud Vitalis 
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Un exemple d’application de la méthode MsVar 

•  Les Orangs-Outans et la déforestation : 

Delgado and Van Schaik,  
2001 
Evolutionary Anthropology 

Quelle est la cause de 
la baisse de taille de 
population? 
La génétique peut elle 
nous aider? 
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Un exemple d’application de la méthode MsVar 
•  Les Orangs-Outans et la déforestation : les données 

<6="+&
>(-'?'.'-3'-&
@()A)(B"&C'-:.D'+E&

>(-'?'.'-3'-&
F(G"+&

!"#"$!%&$

H3+(:D).D+')&)'-A%&
4#6%.)E&6()&$')#&
$)'-.'56-%7&

200 individus 
14 locus microsatellites 
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Un exemple d’application de la méthode MsVar 
•  Les Orangs-Outans et la déforestation : 

MsVar détecte bien 
un réduction de 
taille de population 
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Un exemple d’application de la méthode MsVar 
•  Les Orangs-Outans et la déforestation : 

MsVar détecte bien 
un réduction de 
taille de population 
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Un exemple d’application de la méthode MsVar 
•  Les Orangs-Outans et la déforestation : 

MsVar détecte 
bien un réduction 
de taille de 
population 

FE : Forest exploitation 
F: Farmers 
HG:  Hunter-gatherers 

et permet d’obtenir une datation 



90 

Un exemple d’application de la méthode MsVar 
•  Les Orangs-Outans et la déforestation : 

MsVar détecte 
bien un réduction 
de taille de 
population 

FE : Forest exploitation 
F: Farmers 
HG:  Hunter-gatherers 

et permet d’obtenir une datation: 
l’exploitation de la forêt semble 
être la cause… 
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• Probability of a sample D given mutational and demographic 
parameters of the model considered can be computed using 
the probabilities of transition between the different events 
affecting the genealogy (with mutations), i.e. the different 
ancestral states Hk .  

a genealogy = genealogical history of the sample can be 
divided into m successive events/states Hk (coalescences, 
mutations, migrations) 

   Gi={Hk; 0 > k > -m } = { H0,H-1, .. ,H-m+1,H-m,} 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 
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• Probability of a sample D given mutational and demographic 
parameters of the model considered can be computed using 
the probabilities of transition between the different ancestral 
states Hk.  

   Gi={Hk; 0 > k > -m } = { H0,H-1, .. ,H-m+1,H-m,} 

the probability of a given state Hk can be expressed as the 
probability of all possible ancestral states Hk-1 multiplied by 
their associated transition probability possible Pr(Hk|Hk-1) 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 
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•   the principle of Griffiths et al. importance sampling approach : 
  = the recurrence between ancestral samples 

exploring all possible ancestral sample configurations is usually 
impossible,  
  Monte Carlo simulations are used to explore a given 
number K of possible genealogies by building genealogies 
backward in time from the initial sample configuration H0 to the 
MRCA (Absorbing Markov chains with absorbing state being the MRCA) 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 
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•   the principle of Griffiths et al. importance sampling approach : 
 = the recurrence between ancestral samples 
  Monte Carlo simulations on Z possible genealogies build 
backward in time from D=H0 to the MRCA 

the probability of the data for a given genealogy z is the product 
of all transition probabilities between ancestral states from H0 
to H-m = the MRCA 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

p(D = H0) " EZ [p(Hz,0 Hz,#1)p(Hz,#1Hz,#2)...p(Hz,#m+1Hz,#m )p(Hz,#m )]
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•   the principle of Griffiths et al. importance sampling approach : 
 = the recurrence between ancestral samples 
  Monte Carlo simulations  

This is the approach of Griffiths & Tavaré 1984, implemented in 
GeneTree for DNA sequence  

Genealogies / coalescent trees are explored according to the forward 
transition probabilities Pr(Hk|Hk-1) 

The approach is working but relatively inefficiently because it uses forward 
transition probabilities to build genealogies backward 
   too many tree simulation needed 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

p(D = H0) " EZ [p(Hz,0 Hz,#1)p(Hz,#1Hz,#2)...p(Hz,#m+1Hz,#m )p(Hz,#m )]
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•   the new importance sampling of DeIorio & Griffiths 2004 : 
 = the recurrence between ancestral samples 
  it is much better to try to simulate from the backward 
transition probabilities Pr(Hk-1|Hk). Those probabilities are 
unknown but they may be approximated  

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 
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•   the new importance sampling of DeIorio & Griffiths 2004 : 
 = the recurrence between ancestral samples 
  it is much better to try to simulate from the backward 
transition probabilities Pr(Hk-1|Hk). Those probabilities are 
unknown but they may be approximated  

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

importance sampling weights 
= correction for simulating according to  

! 

ˆ p (Hk"1 | Hk )
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•   the new importance sampling of DeIorio & Griffiths 2004 : 
 = the recurrence between ancestral samples 
  it is much better to simulate genealogies from approximated 
backward transition probabilities   

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

ˆ p (Hk"1 | Hk )
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•   the new importance sampling of DeIorio & Griffiths 2004 : 
 = the recurrence between ancestral samples 
  it is much better to simulate genealogies from approximated 
backward transition probabilities   

the probability of the data for a given genealogy z is the product of all 
transition importance weights wIS(Hk,Hk-1) between ancestral states from H0 
to H-m = the MRCA 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

ˆ p (Hk"1 | Hk )
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•   the new importance sampling of DeIorio & Griffiths 2004 : 
 = the recurrence between ancestral samples 
  it is much better to simulate genealogies from approximated 
backward transition probabilities   

The approach of DeIorio & Griffiths 2004 is much more efficient,  
   1,000 times less trees to explore! 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

ˆ p (Hk"1 | Hk )
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Computation time and model complexity  
with Griffiths & Tavaré (1984) algorithm 

2 pop 

2 alleles 

2 pop 

4 alleles 

4 pop 

4 alleles 

3 H 

1H30 (1 GHz) 

10 min 

10 pop 

30 alleles 
?? 

«  complexity» 

tree number (iterations) 

Too slow to be practically used or inferences 

Number of genealogies (= iterations) and time to correctly infer the likelihood 
of a sample at a single parameter point (one vector $ of parameter values) 
Complexity = pop number x possible allelic state number 
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10 pop 

30 alleles tree number (iterations) 

2 pop 

2 alleles 

2 pop 

4 alleles 

4 pop 

4 alleles 

. . . 
with De Iorio & 
Griffiths (2004) 

1-15 
min 

«  complexity» 

much more efficient, practically usable for inferences 

Computation time and model complexity  
with DeIorio & Griffiths (2004) algorithm 
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•   the new importance sampling of DeIorio & Griffiths 2004 : 

possible genealogies (= coalescent trees) with mutations are 
build backward in time event by event (i.e. Hk, each time the 
sample configuration changes) until the MRCA is found. 

Those coalescent tree simulations (absorbing Markov chains) 
are used to explore the genealogy space 

The importance sampling fonction   is used to more 
efficiently explore the genealogical space (i.e. more likely 
genealogies, with the more likely events) 

the parameter space is explored independently 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

ˆ p (Hk"1 | Hk )
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•   the new importance sampling of DeIorio & Griffiths 2004 : 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

p(Hk ) = w ˆ p (Hk,Hk"1) # ˆ p (Hk"1 | Hk )
Hk"1

$ # p(Hk"1)

p(H0) = EIS wIS (Hk,Hk"1)
k =0

k ="m +1=MRCA

% # p(H"m )
& 

' 
( 

) 

* 
+ 
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•   the recurrence :   

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

! 

p(Hk ) = wIS (Hk,Hk"1) • ˆ p (Hk"1 | Hk )
Hk"1

# • p(Hk"1)

p(H0) = EIS wIS (Hk,Hk"1)
k =0

k ="m +1=MRCA

$ • p(H"m )
% 

& 
' 

( 

) 
* 

H0 

H-1 

H-2 

H-3=MRCA 

mutation 

coalescence 

coalescence 
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

H0 

H-1 

H-2 

H-3=MRCA 

mutation 

coalescence 

coalescence 

•   Coalescent tree building 
1.  Start with the sample configuration H0 

2.  Draw randomly an event among all possible events (=coa ou mig ou 
mut) from the IS transition probabilities  

$  new ancestral configuration Hk-1  
3.  compute and store the IS transition weight wIS(Hk-1,Hk) 
4.  Go back to 2 until the MRCA is found 
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

H0 

H-1 

H-2 

H-3=MRCA 

mutation 

coalescence 

coalescence 

•   Coalescent tree building 
1.  Start with the sample configuration H0 

2.  Draw randomly an event among all possible events (=coa ou mig ou 
mut) from the IS transition probabilities  

$  new ancestral configuration Hk-1  
3.  compute and store the IS transition weight wIS(Hk-1,Hk) 
4.  Go back to 2 until the MRCA is found  
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

H0 

H-1 

H-2 

H-3=MRCA 

mutation 

coalescence 

coalescence 

•   Coalescent tree building 
1.  Start with the sample configuration H0 

2.  Draw randomly an event among all possible events (=coa ou mig ou 
mut) from the IS transition probabilities  

$  new ancestral configuration Hk-1  
3.  compute and store the IS transition weight wIS(Hk-1,Hk) 
4.  Go back to 2 until the MRCA is found  
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

H0 

H-1 

H-2 

H-3=MRCA 

mutation 

coalescence 

coalescence 

•   Coalescent tree building 
1.  Start with the sample configuration H0 

2.  Draw randomly an event among all possible events (=coa ou mig ou 
mut) from the IS transition probabilities  

$  new ancestral configuration Hk-1  
3.  compute and store the IS transition weight wIS(Hk-1,Hk) 
4.  Go back to 2 until the MRCA is found  
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

H0 

H-1 

H-2 

H-3=MRCA 

•   Coalescent tree building 
1.  Start with the sample configuration H0 

2.  Draw randomly an event among all possible events (=coa ou mig ou 
mut) from the IS transition probabilities  

$  new ancestral configuration Hk-1  
3.  compute and store the IS transition weight wIS(Hk-1,Hk) 
4.  Go back to 2 until the MRCA is found  

probabiity of the MRCA = probability of the 
allelic state of the MRCA in the stationnary 
distribution of the mutation model 

for most model it is equal to 1/K,  
with K the number of possible allelic state 
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

• Probability of the sample for a given coalescent tree: 

All transition weight wIS(Hk-1,Hk) were computed and stored 

! 

p(H0 |Gz) = wIS (Hk,Hk"1)
k=0

k="m+1=MRCA

# $ p(H"m )

p(H0 |Gz) = wIS (Hk,Hk"1)
k=0

k="m+1=MRCA

# $1/K
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

• Probability of the sample using Monte Carlo integration over a 
large number (Z) of coalescent trees: 

! 

p(H0 |Gz) = wIS (Hk,Hk"1)
k=0

k="m+1=MRCA

# $1/K

! 

p(H0) = EIS p(H0 |Gz)[ ]

p(H0) "
1
Z

p(H0 |Gz )
z
#



99 

Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

•  the likelihood of the sample L(P|D)=p(H0) is computed for 
many points (random or on a grid) over the parameter space 
and the likelihood surface is interpolated using Kriging 

P2 
P1 

L 
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Demographic inference under the coalescent
the approach of Griffiths et al. (IS) 

• ML point estimate and Confidence intervals are determined 
from this interpolated likelihood surface 
 no convergence required! 

P2 
P1 

L 

PML =  maximum likelihood  estimate 

CI 
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In theory, Maximum Likelihood methods (ML) should be more 
powerful than moment based methods (FST) because : 

#  Use all the information present in the genetic data 

#  Powerful maximum likelihood statistical framework 

#  Possible to make inference on parameters other than D%&  

!  Migration rates (Nm) 

!  Shape of the distribution 

!  Total population size 

!  Mutation rate 
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IBD and maximum likelihood inference  



IBD and maximum likelihood inference  
  Griffiths et al. (IS, software MIGRAINE) 
 IBD 1D, recent development for 2D IBD (in prep) 

Demic model of IBD on a circle or on a line with absorbing 
boundaries 

IS much faster than MCMC (10x + easy parallel computing)  

Number of parameters reduced by consideration of homogeneous 
IBD model 



1- First results under stepping stone migration (i.e. no middle/long 
distance migrants):  

 very good precision and robustness on Nm inference :  

  Rel biais =[0.04-0.12] and  Rel RMSE=[0.15-0.5]  

 relatively good precision for N! 

   Rel biais =[0.04-0.40] and Rel RMSE=[0.25-0.8] ) 

   

IBD and ML inference  



1- First results under stepping stone migration (i.e. no middle/long 
distance migrants):  

   

N!  slightly influenced by the total number of sub-populations 
considered in the analysis ("Ghost populations") 

IBD and ML inference  



2- geometric dispersal                (i.e.  with middle/long 
distance migrants):   

       
Large g ! more long distance, large Dσ2 

D!!and Nm inferences much more precise and robust than for g 

large m and g (i.e. more migrants, at larger distances)  

 " more influence  of the ghost/unsampled pops and of the 
 mutation process   

 Stronger effect for N! and g than Nm,  

 not much effect for  D!! (compensation of different bias) 

IBD and ML inference  



2- geometric dispersal                (i.e.  with middle/long 
distance migrants):   

       
Large g ! more long distance, large Dσ2 

D!!and Nm inferences much more precise and robust than for g 

ML more accurate than moment based regression method when 
analyzed under the good model (i.e. nb of sub-pops and mutation 
processes well specified) 

Hopefully the results are also very accurate for most cases with 
misspecifications 

IBD and ML inference  



3- test on a real data set : the 1D damselflies data set 

Not much information on g, because of 
a strong correlation with Nm 

Lines of equal 4D# & 
values 

IBD and ML inference  



3- test on a real data set : the 1D damselflies data set 

IBD and IS inference (MIGRAINE)  



4 - Comparison with demographic estimates and the moment 
based regression method on the damselflies example 

"Effective" demographic estimates are probably overestimated  
(not corrected for temporal variations in density) 

CI obtained by the regression method overlaps widely with the one 
given by MLE.  



4 - Comparison with demographic estimates and the moment 
based regression method on the damselflies example 



Other possible explanations for the observed differences: 

•  Shape of the dispersal distribution (i.e. not geometric in reality) 

•  Influence of past demographic processes/fluctuations 

•  Mutation processes, edge effects, number of sub-populations, 
binning (but showed only moderate effects on simulations) 

4 - Comparison with demographic estimates and the moment 
based regression method on the damselflies example 







Human data : villages of New Guinea 

First test of MIGRATE  : comparison with 
demographic data  

Limited dispersal : few 
kilometers per generation 
Demographic data : Wood et al. Am. Nat. 1985 
Genetic data (allozymes) : Long et al. Am. J. Phys. Anth.1986 



2 4 6 8 10 12 14 
2 
4 
6 
8 
10 

Demography 

distance 

Number of 
migrants 

moment based regression method  

( ar ) 
 $ inference of !2 :  

1.4 km"/generation 

First test of MIGRATE  : comparison with 
demographic data  
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2 
4 
6 
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Demography 

distance 

Number of 
migrants 

6 
8 
10 

MIGRATE 

2 4 6 8 10 12 14 
2 
4 

Number of 
migrants 

distance 

MIGRATE 
Over estimation of !2 :  
16.3 km"/generation 

First test of MIGRATE  : comparison with 
demographic data  



11 samples ( ) of 20 
individuals evolving on a 
lattice of  40 000 
(200X200) sub-
populations 

5 loci  
KAM 10 alleles 
Mutation rate of 5.10-4 

stepping stone migration  

Complementary tests using simulations 



expected 

Number 
of 

migrant
s 

distance 

Obtained 

5 10 15 20 25 30 
2 
4 
6 
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12 5 10 15 20 25 30 
2 
4 
6 
8 
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12 

5 10 15 20 25 30 
2 
4 
6 
8 
10 
12 

Simulated data set 1 

119 

Over-estimation at 
large distances 

Simulated data set 2 

Simulated data set 3 



Yes 

Observed on simulations 
by Beerli et Felsenstein  
(2001) : 
Expected bias when low 
number of migrants 

Possible explanations…(1) 

Inherent Bias of the 
method? 



5 10 15 20 25 30 
2 
4 
6 
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10 
12 

5 10 15 20 25 30 
2 
4 
6 
8 

10 
12 

Small run (6 days at 1GHz) 

Long run (3 weeks at 1Ghz) 

No major 
effects 

Possible 
explanations…(2) 

Wrong mutation model? 

Number of populations 

Slow convergence of 
MCMC? 

Inherent bias of the 
method? 



MIGRATE   SIMULATIONS 

     11   40000 

Not easy to solve in practice 

Possible explanations…(3) 

Total number of sub-
populations  vs number of 
sampled sub-populations? 



Many possible explanations… 

Very slow " difficult to test 

Bad precision under IBD 

Inherent bias to method? 

Slow convergence of MCMC? 

Total nb of sub-populations  
VS nb of sampled sub-
populations? 

Too many parameters to 
infer? 

Yes 

No major effects 

? – not easy to solve in 
practice 

Expected to have an 
important effect 


