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Ex1 : Provenance de défenses d'éléphants 
saisies? 
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Ex1 : Provenance de défenses d'éléphants 
saisies? 

37 tusks from a  
large seizure in Singapore 

Where are they coming from? 

Known populations, genetically 
characterized  
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Ex1 : D'ou viennent ces défenses d'éléphants? 

Estimated locations of the tusks : 
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Biological questions : 
genetic diversity description PCA 
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Biological questions 

-  Geographic origin  of some individuals with 
unknown origin 

-  Population delimitation, spatial or not 

-  Migrant detection / inference of recent migration 
rates 

-  Analysis of genetic introgression / hybridization 
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Model-based vs. exploratory approaches 
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Model-based vs. exploratory approaches 
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Classification vs. Clustering 
(model-based approaches) 

What is a priori known about sampled population and 
individuals ? 

Assignment: some focal individuals, of 
unknown origin, are assigned to a priori 
defined populations or groups 

Software : GENECLASS2 

Clustering : unknown a priori populations 
or groups, clusters are build from the 
genetic data 

Software : STRUCTURE, GENELAND, … 
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Assignment principle 
Definition : Assign individuals of unknown origin to a priori 

known populations (i.e. genetically  characterized), 
using their multilocus genotypes  

Main assumptions :  

1- known populations and large genetic samples from each pop 

2- In each population :  - Hardy-Weinberg equilibrium 
   - linkage equilibrium 

Ex : Paetkau et al. 1995, Rannala & Mountain 1997 
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First algorithm : Paetkau et al. 1995  
Hardy Weinberg + linkage equilibrium ➠ allows likelihood computation 
using the probability that a given multilocus genotype came from a 
given population 

 For a single locus, the likelihood L of a genotype occurrence in 
a population is proportional to its expected genotype frequencies under 
HW given the allelic frequencies in the population : 

pijk : frequency of allele k at locus j in pop i 

    L ≈ 2*pijk*pijk'   if heterozygote kk' 
   

      or L ≈ pijk²       if homozygote kk 

Independent loci ➠ the multilocus likelihood is the product of the 
likelihood at each locus 
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First algorithm : Paetkau et al. 1995  
3 steps of the algorithm: 

1- Computation of allelic frequencies in each population 

2- Computation of the likelihood of the membership of each focal individual 
to each population 

3- Assignment of the focal individuals to the population for which they have 
the highest likelihood of membership (Maximum likelihood) 

Supplementary assumption : allelic frequencies inferred from the 
genotypes sampled in each population are close to the true values 
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First algorithm : Paetkau et al. 1995  
Supplementary assumption : allelic frequencies inferred from the 

genotypes sampled in each population are close to the true values 

Potential problem: 
 one allele, present in the genotype of a focal individual, is not present 
in a population ➠ null likelihood because pijk=0 
 However this allele may be rare and may not have been sampled just 
by chance (small sample bias) 

2 ad-hoc solutions : 
•  Always put a low frequency to potentially unsampled alleles (arbitrary 

or 1/(gene sample size))  
•  Always add the focal individual genotype to each population for 

population allelic frequency computations 



14 

Paetkau et al. 1995  
Example : Brown Bears population structure 

Paetkau et al. 1998, Molecular Ecology 
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Paetkau et al. 1995  
Example : Brown Bears population structure 

Paetkau et al. 1998, Molecular Ecology 
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Paetkau et al. 1995  
Example : Brown Bears population structure 

Paetkau et al. 1998, Molecular Ecology 

assignment results : 
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Paetkau et al. 1995  
Example : Brown Bears population structure 

Paetkau et al. 1998, Molecular Ecology 

1 – migration between adjacent population 

2 – >7km-wide rivers act as strong barriers 

interpretated 
in terms of 
migration… 
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Second algorithm : Cornuet et al. 1999  

This method does not assume HW nor linkage equilibrium,  
 it is strictly based on individual genetic distances 

Distances = Cavalli-Sforza & Edwards chord distance, shared allele 
distance or (δµ)² especially designed for microsatellites 

Focal individuals are assigned to the "closest" population, i.e. the 
population showing the shortest distance to the focal individual   
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The main potential problem of both 
algorithms 

Those algorithms always assign individuals to the population 
showing the largest "score" (highest likelihood or shortest 
distance) 

 However, the set of sampled populations may not contain the 
true population of origin of the focal individual 

➠ need for a measure of the confidence of each assignment 
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The exclusion method of Cornuet et al. 
1999 

Principle: Confidence measure based on the estimation by 
simulation of the distribution of the assignment score (for 
all possible genotypes) for membership in a population 

Computing the assignment score for all possible genotypes is too 
computationally intensive ➠ Monte Carlo simulations 
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The exclusion method of Cornuet et al. 
1999 

Principle: Confidence measure based on the estimation by 
simulation of the distribution of the assignment score (for 
all possible genotypes) for membership in a population 

Simulation method of Cornuet et al. 1999 : 

1.  Simulate a large number of genotypes (e.g. 1000) from the 
(estimated) allelic frequencies in the population 

2.  Compute the assignment score for each of those simulated 
genotypes ➠ "null" distribution 

3.  Compute the probability of observing the focal individual score 
under the null distribution   



22 

The exclusion method of Cornuet et al. 
1999 

Principle: Simulation of the null distribution of the assignment score for 
membership in a population 

The proportion of the distribution with assignment scores lower than the score of the 
focal individual gives a measure of the probability that the focal individual is 
effectively a member of the tested population 

simulation test in 2 diverging populations :  

Divergence = 20 generations Divergence = 200 generations 
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Comparison of different algorithms  
(Cornuet et al. 1999) 

Simulation test under a model of divergence of the effects of: 

•  Mutational model 
•  Sample sizes 
•  Locus number 
•  differentiation (i.e. divergence time) 

on the proportion of well classified individuals  
with the methods of  

 Paetkau et al. 1995 (F), Rannala & Mountain 1997 (B, highly 
similar to F), 

and the distance method of Cornuet et al. 1999 with shared allele 
distance (D), Cavalli-Sforza a Edwards distance (C) and (δµ)² 
(G only for SMM) 



24 

Comparison of different algorithms  
(Cornuet et al. 1999) 

•  Mutational model : 
 Infinite number of Allele Model (IAM, no homoplasy ➠ most informative 
model) vs. Stepwise Mutation Model (SMM, for microsatellites) 

•  Differentiation (Fst, directly linked to divergence time Div T) 

•  Locus number 

IAM                               SMM 

Div T 

2000 

200 

20 

Fst 

0.3 

0.08 

0.01 
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Comparison of different algorithms  
(Cornuet et al. 1999) 

•  IAM vs. SMM, differentiation level, locus number 

IAM                               SMM 

Div T 

2000 

200 

20 

Fst 

0.3 

0.08 

0.01 

•        strong effect of the mutation processes, better under IAM than SMM 

•        B > F > chord distance >  shared alleles distance > (δµ)² distance 

•        better for larger differentiation and larger number of loci 

➠ no surprise 
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From individual assignments to the 
inference of migration rates  

•  Cornuet et al. (1999) is a good example for comparison of methods 
using simulations but no consideration of migration (pure divergence 
model) 

Most models in population genetics (Fstatistics, diffusion, coalescent) 
assume demographic equilibrium (mutation – drift - migration) 

➠ Integrative over long time periods (with few exceptions e.g. IBD) 

➠ recent migration events are hardly detectable with such methods 

By contrast, no demographic equilibrium assumptions for assignment 
methods 

  ➠ allows to study recent migration processes 
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non-spatialized clustering :  
the STRUCTURE software 

Falush, Stephens, and Pritchard (2003, 2007)  
Hubisz, Falush, Stephens and Pritchard (2009) 



STRUCTURE Objectives 

Grouping individuals into homogeneous genetic clusters using 
their multilocus genotypes only,  
and jointly inferring  allele frequencies in those clusters 

Also : 

•  Inferring the level of introgression/hybridization of each 
individuals 

•  Inferring the origin of a particular locus (i.e. a part of a 
chromosome) 

•  Inferring the most likely number of cluster K in a data set 

28 



STRUCTURE  
principle and assumptions 

Same assumptions than for assignment methods: 

 Hardy-Weinberg equilibrium in each cluster 
  linkage equilibrium between loci 

“Our main modeling assumptions are Hardy-Weinberg equilibrium 
within populations and complete linkage equilibrium between loci 
within populations” 

“Loosely speaking, the idea here is that the model accounts for 
the presence of HWD or LD by introducing population structure 
and attempts to find populations groupings that (as far as 
possible) are not in disequilibrium” 

29 



STRUCTURE: The model 
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the data = X = individual multilocus genotypes (genetic sample) 
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X is (N×2I) where N is the number of individuals and I 
the number of loci 



STRUCTURE: The model 

31 

the data = X = individual multilocus genotypes (genetic sample) 

  phi011 phi015  phi029  phi031  phi062 

1 215   215 82   98 150  150 223  223 164  164 

2 218   218 82 102 158  158 187  227 164  164 

3 218   218 86   98 150  150 187  227 164  164 

4 215   215 86   98 154  154 187  191 164  164 

5 218   218 -9    -9  154  158 191  223 164  164 

6 215   215 86   86 158  158 227  227 164  164 

microsatellite data set example 



STRUCTURE: Modeling cluster of origin  
Model 1 

MODEL 1= (“basic”) model : 'without admixture' 
Assumption :  
each individual come from a unique ancestral population (cluster)  
i.e., all his genes come from a unique cluster among the K possible 

clusters 
32 



STRUCTURE: Model 1 
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Z = cluster membership of each individual 
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z(N×1)

Z is a vector of length N 

•  if individual i is a member of cluster k then 
  z(i) = k 

P(z(i) = k) is the probability that individual i is a 
member of cluster k  



STRUCTURE: Modeling cluster of origin  
Model 2 

MODEL 2 = model with 'admixture' (most commonly used) 
Assumption: 
the different genes of an individual may come from different clusters 

due to recent introgression /  hybridization / migration events. 
Inference is then done on the proportion of genes Q that comes from 

the K different clusters 
34 



STRUCTURE Model 2 
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Z = cluster membership of each locus allele copy from each 
individual => Z is a matrix of dimension N x 2L (Rq: if haploids: N x L) 
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P(zn
(i,l) = k) is the probability that the allele copy 

carried by the individual n at locus i on his/her 
chromosome l (eg l=1 if paternal and l=2 if 
maternal) originates from cluster k 

Q = proportion of individual genome from each cluster  
=> Q is a matrix of dimension N x K 
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STRUCTURE: Extending model 2 to 
account for LD (i.e. dependancy of loci along chromosomes)  

MODEL 3 

MODEL 3: the 'linkage' model (explicit recombination on chromosomes) 

generalization of the admixture model with higher probabilities of 
coming from the same cluster for different loci with low level of 
recombination 

i.e. different "chunks" on each chromosomes may come from different 
clusters => P(zn

(i,l) = k | zn
(i-1,l) = k) depends on r  

36 



STRUCTURE: Extending model 2 to 
account for correlation of cluster All. Freq. 

MODEL 4 

MODEL 4 = Modeling correlation among allele freq. across clusters: the 
F-model 

Assuming cluster represent ancestral population, allele frequencies 
across cluster might be correlated due to demographic history relating 
those populations. 

T 

37 



MODEL 4 

4. Modeling correlation among allele freq. across clusters: the F-model 
{pi} : Vector of allele frequencies at locus i in the pop ancestral to all the 

cluster pops (star-shaped phylogeny);  
{aik} : Vector of allele frequencies at locus i in cluster pop k 

{FST
k} : amount of differentiation (div. time≈t/2N) between the actual cluster 
and the population ancestral to all clusters  38 

T FST
1 

FST
2 

FST
3 

{pi} 

{ai3} 
{ai2} 

{ai1} 



MODEL 4 

4. Modeling correlation among allele freq. across clusters: the F-model 

Statistical modeling:  

! Interpretation as a pure drift model of divergence (works rather well 
providing divergence time are not too high �������)  

T FST
1 

FST
2 

FST
3 

{pi} 

{ai3} 
{ai2} 

{ai1} 

39 



Inference method (Ex. Model 2) 
Directed Acyclic Graph 
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X=Genotypes 

A 
Cluster Allele  
Frequencies  

Z 
Custer Membership of 

Each Individual Allele  

Q 
Ancestry Proportions 

Of each Individual 

α 

Likelihood : П(X|A,Z) 

Prior on A 
П(A) 

Prior on Z 
П(Z|Q) 

Prior on Q 
П(Q|α) 

Prior on α 
П(α) 

€ 

π X,Q,Z, A( )= π X | Q,Z, A( )π Z | Q( )π Q | α( )π A( )π α( )



Inference method (Ex. Model 2) 
Number of Parameters 
Ex. 
N=100 ind 
I=20 locus with C=3 alleles 
K=3 clusters 
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X=Genotypes 

A 
Cluster Allele  
Frequencies  

Z 
Custer Membership of 

Each Individual Allele  

Q 
Ancestry Proportions 

Of each Individual 

α 

Nx2I=4000 obs. 

KxIxC=180 Nx2I=4000 

NxK=300 

1 

Ex. : 4,000 + 180 + 300 + 1 = 4,481 parameters !!! 



Model 2 Specification 
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X = {(xn
(i,1),xn

(i,2))}   
N x 2I matrix (genotypes) 
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Q =  {qn
k}  

N x K matrix  
(Ancestry Prop.) 

α 

HWE 
Linkage  

Equilibrium 
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π zn
i, l = k | qn

k{ }
K( )= qnk

€ 

π ai,c
k{ }

C( ) ~ Dir 1{ }C( ) € 

π qn
k{ }

K( ) ~ Dir α{ }K( )
€ 

α ∼U 0,10[ ]



Dirichlet Distribution 



Estimation of Parameters 
MCMC 
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Step 1: Initialize all parameter values. For instance: 
  - Cluster Allele Freq.: 
    (ai,c

(k)(0)) = 1/C (C Nbr of alleles) 
  - Ind. Allele membership: 
    zn

(i,l)(0) = (1,1) or (2,K) or (1,K) … at random 
  - Ind. Ancestry Proportion: 
    qn

k (0) = (1/K , 1/K,...,1/K) 

Step 2: Iterate from t=1 to t=T times sampling from full 
conditional distributions for each parameters in turn to 
obtain samples from the posterior distributions of the 
parameter of interest 



MCMC algorithm: Step 2a) 
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 2a) Vector of cluster allele of frequencies at marker i 
given others parameters values 

=> I step (one per locus) 
=> {ai,c

(k)(t)}C | X,Z(t-1) 

€ 

ai,c
k{ }

C
| xn

i, l{ }
N
, zn

i,1, zn
i,2( ){ }

N
~ Dir 1+nk,c{ }

C( ) nk,c :=# xn
i, l = c and zn

i, l = k( )

 2a) Exemple: Update Freq. Of Marker 1 in cluster 1 
=>Marker 1 has three alleles: 110-113-114 
=>At iteration t-1, given Z: 

–  50 alleles 110, 28 alleles 113 and 12 alleles 114 among 
the observed ones (X) originate from cluster 1  

=>{a1,”110”
(1),a1,”113”

(1),a1,”114”
(1)}(t) ~ Dir({51,29,13}) 



MCMC algorithm: Step 2b, 2c, and 2d 
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 2b) Update cluster membership of each of the two alleles from 
each individual in turn (zn

(i,l)(t) | X,Q(t),A(t) ) 
=> 2NxI steps (2 per individual and per locus) 

 2c) Update Ancestry proportion vector of each individual in turn 
({qn

i(t)}K | X,Z(t-1),α(t-1))  
=> N steps (one per individual) 

 2d) Update parameters α (α(t)|Q(t),α(t-1)):  
  =>not of usual form 
=> 1 step (propose a value and accept/refuse it according to MH rule...) 

€ 
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Example: Taita Thrush data 

· three main sampling locations in Kenya 
· low migration rates (radio-tagging study)) 
· 155 individuals, genotyped at 7 microsatellite loci 
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Cluster 1 

Cluster 2 Cluster 3 

Model with admixture 
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Cluster 1 

Cluster 2 Cluster 3 



50 

Cluster 1 

Cluster 2 Cluster 3 
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Example on highly structured populations 
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Example on highly structured populations 
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Example on highly structured populations 

Very clear structure,  
few migration/hybridization events detected 
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Example on admixed populations 
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Example on admixed populations 
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Inference of the number of clusters K 

STRUCTURE do not infer the number of cluster using MCMC, 

K should be inferred afterwards from many MCMC runs with different 
K values by choosing the runs with the higher posterior probabilities 
of the data : 

Taita Thrush data 
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Inference of the number of clusters K 

STRUCTURE do not infer the number of cluster using MCMC, 

problem : statistical theory state that the likelihood should always 
increase between models when the number of degrees of freedom 
increases  

the likelihood should increase with K … 

there may be a convergence problem with this data set? 

Taita Thrush data 
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Inference of the number of clusters K 
Hopefully, sometimes it is much better : 

the variation in likelihood between different K  
values can also be used (∆K) 

Scottish feral cat 



59 

Inference of the number of clusters K 

STRUCTURE do not infer the number of cluster using MCMC, and 
what K exactly represents is not clear, especially in cases of 
hierarchical "barriers"/groups 

It is usually better to analyze different values of K, and conclude from 
all of them instead of focusing on the "best" K value.  
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Spatial clustering:  
the GENELAND software 
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Spatial clustering:  
the GENELAND software 

Aim : spatial delimitation of genetically homogeneous clusters 
from individual multilocus genotypes with spatial coordinates 
 = locate genetic discontinuities in space 

and also : 

•  Infer the number of cluster on the sampled area (integrated in 
the MCMC, but not more meaningful than for STRUCTURE) 

•  Assign individuals to the different clusters (migrant detection) 
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GENELAND spatial population model 
Set of spatialized panmictic populations 
Each cluster (one panmictic population) is a formed by a set of 
polygons which contains individuals belonging to this cluster : 

it is called the colored Voronoi tessellation � 1 pop is 1 color 
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GENELAND spatial population model 
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GENELAND spatial population model 
Set of spatialized panmictic populations 
example of different Tessellation outputs for different spatial 
correlations  

The spatial correlation is 
modeled through the parameter  
m = max number of disjointed 
polygons that form a cluster 

small m ➠ more spatial correlation, 
large m ➠ less spatial correlation 
because p(2 ind ∈ single cluster) 
increase with m 

! not really linked to IBD ! 
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GENELAND method 
the principle of the method is very close to STRUCTURE method 
with additional parameters for the spatial arrangement of the 
different cluster 

The main assumptions are : 
•  the colored Tessellation 
•  Hardy-Weinberg equilibrium in each cluster 
•  linkage equilibrium between loci in each cluster 

Contrary to STRUCTURE, the MCMC algorithm implemented 
in GENELAND also include the parameter K, the number of 
clusters. 
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GENELAND : simulation test 
Inference of K  

Contrary to STRUCTURE, the MCMC algorithm 
implemented in GENELAND also include the 
parameter K, the number of clusters. 

Simulation test of the inference of K 
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GENELAND : simulation test 
Individual assignment  

Geneland 
Structure 

GENELAND makes less 

assignment errors than 

STRUCTURE, especially when 

there is a strong spatial structure 

(small m) and a weak 

differentiation (low FST) 
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GENELAND : simulation test 
spatial cluster delimitation 

Very good spatial delimitation of genetic clusters with FST=0.16 
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GENELAND : simulation test 
spatial cluster delimitation 

less and less 
precision when 

genetic differentiation 
decreases 
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GENELAND : simulation test 
immigrant detection 

good detection  

Migrants do not strongly 
affect the spatial 
delimitation of the 
clusters 

Migrants are more 
easily detected if they 
are isolated rather than 
surrounded by 
residents (especially for 
small m) 

migrants 
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GENELAND : test on a real data set 
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GENELAND : test on a real data set 
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GENELAND : test on a real data set 

spatial delimitation of 6 
genetic clusters 
detection of 5 migrants 
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GENELAND : test on a real data set 

This cluster was not 
detected with other 
methods : GENECLASS, 
STRUCTURE 

Better performance or 
bias of the spatial 
method? 
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GENELAND :  
simulation tests of potential problems 

True 
delimitation 

What happens when samples are aggregated in space ?  

Results are intuitive: 

Spatial cluster delimitation 
is precise when there are 
sampled individuals around 
them. 

➠ better to sample 
homogeneously around the 
potential barriers 
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GENELAND :  
simulation tests of potential problems 

What happens when there is Isolation By Distance ?  

Results are also intuitive: 

Spatial cluster delimitation 
is not working for strong 
IBD and is worth when 
samples are aggregated 

➠ need for a new version 
designed for IBD 

True 
delimitation 



77 

quick example of an exploratory method : 
PCA 
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quick example of an exploratory method : 
PCA 
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PCA 
Interpretation  

(McVean, 2009,  
Plos Genetics) 
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PCA 
Interpretation  

(McVean, 2009,  
Plos Genetics) 



81 

PCA Interpretation  
(Novembre & Stephens, 2008, Nat Genet) 
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PCA Interpretation  
(Novembre & Stephens, 2008, Nat Genet) 
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PCA  : conclusion 

One of the numerous methods used to highlight 
genetic structure 

Advantages of PCA analyses  : 

•  Well known statistical properties 
•  Very efficient for large data sets 
•  Numerous extensions (e.g. sPCA, DAPC : Jombart & Co) 
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Conclusions: Assignment, Clustering and PCA 

Limits of above approaches : 
•  Assignation: some prior information about the populations 
is needed (equivalent to supervised clustering)  
•  PCA and Unsupervised Clustering: only representation 
of the genetic diversity (that might be strongly affected by 
the sample characteristics) 

These approaches do not provide information about 
the (historical) events that resulted in the observed 
genetic structure. 
They might at best help in defining compteing 
demographic scenarios 
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Conclusions: Assignment, Clustering and PCA 

Limits of above approaches : 
•  Assignation: prior information needed   
•  PCA and Unsupervised Clustering: only representative 

Do not provide information about the (historical) events 
that resulted in the observed genetic structure 

e.g.: when using STRUCTURE, extreme cautions is needed 
when interpreting clusters as ancestral populations 
         different demographic scenarios might result in same 
PCA (or Unsup. Clustering) results 
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Conclusions: Assignment, Clustering and PCA 

Do not provide information about the (historical) events 
that resulted in the observed genetic structure 

Other inference methods are needed to infer 
demographic history: 

•  Estimating parameters and comparing scenarios:  
 Likelihood based inferences (cf. Raphael Leblois) 
 ABC approach, e.g. DIY-ABC (cf. Arnaud Estoup) 

• Estimating (or comparing) trees: e.g. Phylip (Felsesntein & 
co), Treemix (Pickrell, Pritchard, 2012), kim_tree (Gautier, 
Vitalis, 2012) 
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Pour le TD de Lundi….. 

Lire rapidement le document 

Lire "R pour les débutants" Emmanuel Paradis 
 (http://cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf) 

on ne présentera pas le logiciel STRUCTURE et son 
interface  mais n'hésitez pas a poser des questions sur 
son utilisation si vous en avez… 


