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Biological questions

Geographic origin of some individuals with
unknown origin

Population delimitation, spatial or not

Migrant detection / inference of recent migration
rates

Analysis of genetic introgression / hybridization



Biological processes Biological patterns

(model-based methods) .‘0
03000

o8 - 3.




Biological processes Biological patterns




Classification vs. Clustering

(model-based approaches)

What is a priori known about sampled population and
individuals ?

Assignment: some focal individuals, of
unknown origin, are assigned to a priori
defined populations or groups

Software : GENECLASS?2

Clustering : unknown a priori populations
or groups, clusters are build from the
genetic data

Software : STRUCTURE, GENELAND, ...

9



Assignment principle

Definition : Assign individuals of unknown origin to a priori
known populations (i.e. genetically characterized),
using their multilocus genotypes

Main assumptions :

1- known populations and large genetic samples from each pop

2- In each population : - Hardy-Weinberg equilibrium
- linkage equilibrium

Ex : Paetkau et al. 1995, Rannala & Mountain 1997
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First algorithm : Paetkau et al. 1995

Hardy Weinberg + linkage equilibrium " allows likelihood computation
using the probability that a given multilocus genotype came from a
given population

For a single locus, the likelihood L of a genotype occurrence in
a population is proportional to its expected genotype frequencies under
HW given the allelic frequencies in the population :

pii - frequency of allele k at locus jin pop i
L = 2*p;"pye if heterozygote kk'
or L = p;;* if homozygote kk

Independent loci ™ the multilocus likelihood is the product of the

likelihood at each locus
11



First algorithm : Paetkau et al. 1995

3 steps of the algorithm:

1- Computation of allelic frequencies in each population

2- Computation of the likelihood of the membership of each focal individual
to each population

3- Assignment of the focal individuals to the population for which they have
the highest likelihood of membership (Maximum likelihood)
Supplementary assumption : allelic frequencies inferred from the

genotypes sampled in each population are close to the true values
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First algorithm : Paetkau et al. 1995

Supplementary assumption : allelic frequencies inferred from the
genotypes sampled in each population are close to the true values

Potential problem:
one allele, present in the genotype of a focal individual, is not present
in a population " null likelihood because p;=0
However this allele may be rare and may not have been sampled just
by chance (small sample bias)

2 ad-hoc solutions :

. Always put a low frequency to potentially unsampled alleles (arbitrary
or 1/(gene sample size))

. Always add the focal individual genotype to each population for
population allelic frequency computations

13



1995

Bears population structure

998, Molecular Ecology

. Alaska

Alxsxamm

200 km

Izembek

-

Fig, 1 Study areas (black), Fifteen individual samples were obtained from southeast coastal Alaska (1-2), Glaciers and soefelds are shown
in grey. According to Kurtén (1973) the Kuskokwim, Alaska Range, and Kluane samples are Ursas arctos horridelis whwreas thwe ABC,
Lzembek and southeast coastal areas fall within the range of UL, dailil



1998, Molecular Ecology

al. 1995

Bears population structure
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Paetkau et al. 1995

Example : Brown Bears population structure

Paetkau et al. 1998, Molecular Ecology
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Paetkau et al. 1995

Example : Brown Bears population structure

Paetkau et al. 1998, Molecular Ecology

1 — migration between adjacent population

2 — >7km-wide rivers act as strong barriers

Population to which individuals were assigned
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Second algorithm : Cornuet et al. 1999

This method does not assume HW nor linkage equilibrium,
it is strictly based on individual genetic distances

Distances = Cavalli-Sforza & Edwards chord distance, shared allele
distance or (0u)? especially designed for microsatellites

Focal individuals are assigned to the "closest" population, i.e. the
population showing the shortest distance to the focal individual

18



The main potential problem of both
algorithms

Those algorithms always assign individuals to the population

showing the largest "score" (highest likelihood or shortest
distance)

However, the set of sampled populations may not contain the
true population of origin of the focal individual

m need for a measure of the confidence of each assignment

19



The exclusion method of Cornuet et al.
1999

Principle: Confidence measure based on the estimation by
simulation of the distribution of the assignment score (for
all possible genotypes) for membership in a population

Computing the assignment score for all possible genotypes is too
computationally intensive = Monte Carlo simulations

20



The exclusion method of Cornuet et al.
1999

Principle: Confidence measure based on the estimation by
simulation of the distribution of the assignment score (for
all possible genotypes) for membership in a population

Simulation method of Cornuet et al. 1999 :

1. Simulate a large number of genotypes (e.g. 1000) from the
(estimated) allelic frequencies in the population

2. Compute the assignment score for each of those simulated
genotypes " "null" distribution

3. Compute the probability of observing the focal individual score
under the null distribution

21



The exclusion method of Cornuet et al.
1999

Principle: Simulation of the null distribution of the assignment score for
membership in a population

The proportion of the distribution with assignment scores lower than the score of the
focal individual gives a measure of the probability that the focal individual is

effectively a member of the tested population \ J{
g\ o 4
simulation test in 2 diverging populations :
Divergence = 20 generations Divergence = 200 generations
3000 3000
2800 lﬁdy-*-* beloaging to the population 2500 lrdnj;.xh belonging to the popelation
2000 2000
1500 individisals from another population 1500 individeals from anotier populaton
1000 _ j 1000 \ |
. “ !
500 It J 500 ul !
0. J --llu- — —p—— 0 ¢ . ) . .‘l!n.‘i"l.}c
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“og 10{genotype |ikeknood) Joa1Dlaenatvne likelihood)



Comparison of different algorithms
(Cornuet et al. 1999)

Simulation test under a model of divergence of the effects of:

. Mutational model

. Sample sizes

. Locus number

. differentiation (i.e. divergence time)

on the proportion of well classified individuals

with the methods of
Paetkau et al. 1995 (F), Rannala & Mountain 1997 (B, highly
similar to F),

and the distance method of Cornuet et al. 1999 with shared allele
distance (D), Cavalli-Sforza a Edwards distance (C) and (du)?
(G only for SMM) 23



Comparison of different algorithms
(Cornuet et al. 1999)

Mutational model :

Infinite number of Allele Model (IAM, no homoplasy "™ most informative
model) vs. Stepwise Mutation Model (SMM, for microsatellites)

Differentiation (Fst, directly linked to divergence time Div T)

Locus number

DivT Fst 5 loci 10loci 20 loci Sloci 10 loci 20 loci
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Comparison of different algorithms

(Cornuet et al. 1999)

. |IAM vs. SMM, differentiation level, locus number
DiV T FST 5 loci 10 loci 20 loci 5 loci 10 loci 20 loci
100 |
03 | —_— 100 )y
ZOOO e ‘ / / . } //— /——
200 0.08 50 .
25 - e — 25 '/’
20 0.01 |~ f -

0

DCFBDCFBDCEFSB ™
GDCFBGDCFBGDCFB

IAM SMM

strong effect of the mutation processes, better under IAM than SMM

B > F > chord distance > shared alleles distance > (du)? distance

better for larger differentiation and larger number of loci

25
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From individual assignments to the
inference of migration rates

« Cornuet et al. (1999) is a good example for comparison of methods
using simulations but no consideration of migration (pure divergence
model)

Most models in population genetics (Fg.;i.ice» diffusion, coalescent)

assume demographic equilibrium (mutation — drift - migration)
m |ntegrative over long time periods (with few exceptions e.g. IBD)

w recent migration events are hardly detectable with such methods

By contrast, no demographic equilibrium assumptions for assignment
methods

m allows to study recent migration processes

26



non-spatialized clustering :
the STRUCTURE software

i |
| A

Inference of Population Structure Using Multilocus Genotype Data

Jonathan K. Pritchard, Matthew Stephens and Peter Donnelly

Falush, Stephens, and Pritchard (2003, 2007)
Hubisz, Falush, Stephens and Pritchard (2009)
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STRUCTURE Objectives

Grouping individuals into homogeneous genetic clusters using
their multilocus genotypes only,

and jointly inferring allele frequencies in those clusters

Also :

Inferring the level of introgression/hybridization of each
Individuals

Inferring the origin of a particular locus (i.e. a part of a
chromosome)

Inferring the most likely number of cluster K in a data set

28



STRUCTURE
principle and assumptions

Same assumptions than for assignment methods:

Hardy-Weinberg equilibrium in each cluster
linkage equilibrium between loci

“Our main modeling assumptions are Hardy-Weinberg equilibrium
within populations and complete linkage equilibrium between loci
within populations”

‘Loosely speaking, the idea here is that the model accounts for
the presence of HWD or LD by introducing population structure
and attempts to find populations groupings that (as far as
possible) are not in disequilibrium”

29



STRUCTURE: The model

the data = X = individual multilocus genotypes (genetic sample)

locus 1 locus i locus |
=1 j=2 =1 j=2 =1 j=2
11 1,2 11 1,2 1,2 1,2
X = (x( ) xl( )) ) ()C( ) xg )) . (X( ) ( ))
(xl(i,l) xl(i,z)) . (x(ll) xgi,z)) x(Li,l) x(Li,z))
(N.1) (N 2) (N,1) (N 2) (N1 (N,2)
(X ) ’ (X ) e (X XL )

X is (Nx2[) where N is the number of individuals and /

the number of loci 2



STRUCTURE: The model

the data = X = individual multilocus genotypes (genetic sample)

microsatellite data set example

phiO11 phiO15 phiO29 phiO31 phi062
1 215 215 82 98 150 150 223 223 164 164
2 218 218 82102 158 158 187 227 164 164
3 218 218 86 98 150 150 187 227 164 164
215 215 86 98 154 154 187 191 164 164

218 218 -9 -9 154 158 191 223 164 164

o O »

215 215 86 86 158 158 227 227 164 164 31



STRUCTURE: Modeling cluster of origin
Model 1

MODEL 1= (“basic”) model : 'without admixture’
Assumption :
each individual come from a unique ancestral population (cluster)

l.e., all his genes come from a unique cluster among the K possible

clusters
32



STRUCTURE: Model 1

Z = cluster membership of each individual (1)

Z is a vector of length N

e if individual jis a member of cluster k then (i)
Z(i) — k

P(z() = k) is the probability that individual i is a
member of cluster k
(N)

Nxl) 33




STRUCTURE: Modeling cluster of origin
Model 2

MODEL 2 = model with ‘admixture' (most commonly used)
Assumption:

the different genes of an individual may come from different clusters
due to recent introgression / hybridization / migration events.

Inference is then done on the proportion of genes Q that comes from

the K different clusters
34



STRUCTURE Model 2

Z = cluster membership of each locus allele copy from each
Individual => Z is a matrix of dimension N x 2L (Rq; if haploids: N x L)

[/ (12 1) 12 12 121 1
R (o ) - (Y )

P(z () = k) is the probability that the allele copy

------ carried by the individual n at locus i on his/her
) (@ ) LY ) chromosome / (eg I=1 if paternal and I=2 if
maternal) originates from cluster k

Z(NXZ;J)
Q = proportion of individual genome from each cluster
=> Q is a matrix of dimension N x K

0=(q -~ g

35
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STRUCTURE: Extending model 2 to
dCCOU nt fOl' LD (i.e. dependancy of loci along chromosomes)
MODEL 3

MODEL 3: the ‘linkage' model (explicit recombination on chromosomes)

generalization of the admixture model with higher probabilities of
coming from the same cluster for different loci with low level of
recombination

I.e. different "chunks" on each chromosomes may come from different

clusters => P(z (i) = k | z (-7) = k) depends on r y



STRUCTURE: Extending model 2 to
account for correlation of cluster All. Freq.
MODEL 4

B o O

MODEL 4 = Modeling correlation among allele freq. across clusters: the
F-model

Assuming cluster represent ancestral population, allele frequencies
across cluster might be correlated due to demographic history relating

those populations.
37



MODEL 4

4. Modeling correlation among allele freq. across clusters: the F-model

{p;} : Vector of allele frequencies at locus i in the pop ancestral to all the
cluster pops (star-shaped phylogeny);

{a;} : Vector of allele frequencies at locus i in cluster pop k

{Fs:*} : amount of differentiation (div. time=t/2N) between the actual cluster
and the population ancestral to all clusters 2=



MODEL 4

Fsr?|

4. Modeling correlation among allele freq. across clusters: the F-model

Statistical modeling:

I Interpretation as a pure drift model of divergence (works rather well
providing divergence time are not too high Fst<0.4) 39



Inference method (Ex. Model 2)
Prior on a

Directed Acyclic Graph . M(a)

Q Prior on Q

Ancestry Proportions

Of each Individual TT(Q|a)

- Prior on A Z _ PrioronZ
Cluster Allele .l_l. ( A) Custer Membership o

Frequencies \;IndividualAllele T(Z|Q)

X=Genotypes Li kelihood : n(x | A ,Z)

a(X,0,Z,A)=na(X10,Z,A)a(Z | O)n(Q ! a)w(A)nx(cx)

40



Number of Parameters
EXx.

N=100 ind

I=20 locus with C=3 alleles

K=3 clusters

a 1
/

Q

Ancestry Proportions NxK=300
Of each Individual

Z
Cluster Allele | KXIxC=180 Custer Membership of | Nx2I=4000
Frequencies Each Individual Allele

X=Genotypes

Nx2I=4000 obs.

Ex.: 4,000 + 180 + 300 + 1 = 4,481 parameters Il

41



Model 2 Specification

a o ~U[0,10]
!
Q= {q,*
N x K{ncgﬁiz ﬂ({élf}K) 3 Dil‘({a}K)

(Ancestry Prop.)

Al{at ). )~ pir({1}) \

< = ki{qt} )=k

A= {a (k)} /= {(Zn(i,1),zn(i,2))}
(¥.n,,h) x 0 et N x 2| matrix
(Clust. All. Freq.) (clust. membership of all.)

\/

N x 2l matrr‘ix (gen(r)‘types) Q Z A nnna, x'
i=1 n=1 [=1

Linkage /

42
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Dirichlet Distribution

Ourichiet dstibusion pe(1.0,.1.0.0.0) Otrichiet Siasbution pe(t0.10.10)

1%, M)
TR0 & - "A)-mn‘ﬁ - oie) = r(zl,_,ﬂ-).




Estimation of Parameters
MCMC

Step 1: Initialize all parameter values. For instance:
- Cluster Allele Freq.:
(a,,(0)) = 1/C (C Nbr of alleles)
- Ind. Allele membership:
z () = (1,1) or (2,K) or (1,K) ... at random
- Ind. Ancestry Proportion:
q.k(0) =(1/K, 1/K...,1/K)

Step 2: lterate from t=1 to t=T times sampling from full
conditional distributions for each parameters in turn to
obtain samples from the posterior distributions of the
parameter of interest y-



MCMC algorithm: Step 2a)

2a) Vector of cluster allele of frequencies at marker i
given others parameters values

=> | step (one per locus)

- {ai,c(k)(t)}c | )(,Z(t—1)

fat J, 1} A=)}, = Di(fien,),) (=it = ana 2t = 4

2a) Exemple: Update Freq. Of Marker 1 in cluster 1
=>Marker 1 has three alleles: 110-113-114
=>At iteration t-1, given Z:
— 50 alleles 110, 28 alleles 113 and 12 alleles 114 among
the observed ones (X) originate from cluster 1

=>{a1,,,110,,(1),a1’,,113,,(1),81,,,114,,(1)}(1) ~ Dir({51,29,13})

45



MCMC algorithm: Step 2b, 2c, and 2d

2b) Update cluster membership of each of the two alleles from
each individual in turn (z “/(t) | X,Q(t),A(t) )
=> 2NxI| steps (2 per individual and per locus)

q,iP(x;’l / {alk})

=K
q,i.P(x,"l’l / {alk})
=1

k!

P(zf;l =kl ) =z

2c) Update Ancestry proportion vector of each individual in turn

(fa, )} | X.2(t-1),a(t-1))

=> N steps (one per individual)
{q,’f}K / {(zi,l,z’i’z )}N,a = Dir({a +mn,k}K) (mn,k =# k)

2d) Update parameters a (a(t)|Q(t),a(t-1)):
=>not of usual form

=> 1 step (propose a value and accept/refuse it according to MH rule...) 2o



Example: Taita Thrush data

* three main sampling locations in Kenya
" low migration rates (radio-tagging study))
* 155 Individuals, genotyped at 7 microsatellite loci

47



Cluster 1

Model with admixture

Cluster 3 \ - ' Cluster 2




Cluster 1

Cluster 3 Cluster 2
After 25 iterations




Clus_te_r 1

Cluster 3 AW over 100,000 iterations Cluster 2




w@m Froely available online PLOS GENETICS
Genetic Structure of Chimpanzee Populations

Celine Becquet', Nick Patterson’, Anne C. Stone®, Molly Przeworski'’, David Reich™*’

1 Degartment of Human Genetics, University of Ovcago, Ohicago, Hinos, United States of America, 2 Broad tmtitute of Harvard and MIT, Cambridge, Massachusetty, United
States of America, 3 School of Human Evalution and Sodal Change, Arizona State University, Tempe, Aszoown, United States of America, 4 Department of Genetics, Harvard
Nedcy Schodl, Boston, Massachusetts, United States of America

Little is known about the history and population structure of our closest living relatives, the chimpanzees, in part
because of an extremely poor fossil record. To address this, we report the largest genetic study of the chimpanzees to
date, examining 310 microsatellites in 84 common chimpanzees and bonobos. We infer three common chimpanzee
populations, which correspond to the previously defined labels of “western,” “central,” and “eastern,” and find little
evidence of gene flow between them. There is tentative evidence for structure within western chimpanzees, but we do
not detect distinct additional populations. The data also provide historical insights, demonstrating that the western
chimpanzee population diverged first, and that the eastern and central populations are more closely related in time.




ugmmmm PLOSGmmcs
Genetic Structure of Chimpanzee Populations

Celine Becquet', Nick Patterson’, Anne C, Stone®, Molly Przeworski'', David Reich®*’

Table 3. Genetic Differentiation among Populations

Location Eastern Central Bonobo

Western 031 (0.32) 0.25 (0.29) 068 (0.68)
Eastern — 0.05 (0.09) 057 (0.54)
Central — — 051 (0.49)




Example on highly structured populations

OPEN (@ ACCESS Freely available online PLOS

Genetic Structure of Chimpanzee Populations

Celine Becquet1, Nick Patterson?, Anne C. Stone?, Molly Przeworski' , David Reich®>*

Central Eastern Western Bonobo

EEEFE

Figure 1. STRUCTURE Analysis, Blinded to Population Labels, Recapitulates the Reported Population Structure of the Chimpanzees

Individuals 76-78 are reported hybrids, Only two individuals with a = 5% proportion of ancestry in more than one inferred cluster are wild born: number
54 and number 17, Red, centrat blue, eastern; green, western; yellow, bonobo
doi: 10137V journal.pgen. 0030066 9001

Very clear structure,

few migration/hybridization events detected



® Taurins Européens (origine ibérique) avec les premiers colons espagnols (1493) et trés
récemment (races francaises)

® Taurins Africains (méme voie que le commerce triangulaire) entre les 16%™et 18*™sidcle

® /oLy originaires d'Inde (ou d'Afrique 7) introduits en Amérique (Sud et US) au
19*™sidcle
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Inference of the number of clusters K

STRUCTURE do not infer the number of cluster using MCMC,

K should be inferred afterwards from many MCMC runs with different
K values by choosing the runs with the higher posterlor probabilities
of the data :

Assumed Posterior
value of K  probability of K

1 ~0

2 ~0

3 0.993 Taita Thrush data
4 0.007

5 0.00005 s6



Inference of the number of clusters K

STRUCTURE do not infer the number of cluster usmg MCMC,

Assumed Posterior
value of K probability of K
1 ~0
2 ~0
3 0.993
0.007 :
‘5‘ 0.00005 Taita Thrush data

problem : statistical theory state that the likelihood should always
Increase between models when the number of degrees of freedom

Increases

the likelihood should increase with K ...

there may be a convergence problem with this data set? iy



Inference of the number of clusters K

Hopefully, sometimes it is much better :

5000
L.
0 o ———¢ > e o o o
/'
—8000 max AKX
(=)
a -10 000
S
-15 000
o0 -9 -9 0 o o 9
2000|
0 1 2 3 4 5 8 7 8 = 100 MNn
K -
Fig. 3 Posterior probability of the data Ln P(D) against the SCOTTiSh fer.al Ca1.

number of K clusters (below), and increase of Ln D) given K,

calculated as [Ln P(D), < Ln P(D)._,| (above).

the variation in likelihood between different K

values can also be used (AK)
58



Inference of the number of clusters K

STRUCTURE do not infer the number of cluster using MCMC, and
what K exactly represents is not clear, especially in cases of
hierarchical "barriers"/groups

It is usually better to analyze different values of K, and conclude from
all of them instead of focusing on the "best" K value.

59
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Spatial clustering:
the GENELAND software

Aim : spatial delimitation of genetically homogeneous clusters
from individual multilocus genotypes with spatial coordinates

= |ocate genetic discontinuities in space

and also :

* Infer the number of cluster on the sampled area (integrated in
the MCMC, but not more meaningful than for STRUCTURE)

« Assign individuals to the different clusters (migrant detection)

61



GENELAND spatial population model

Set of spatialized panmictic populations

Each cluster (one panmictic population) is a formed by a set of
polygons which contains individuals belonging to this cluster :

It Is called the colored Voronoi tessellation ™ 1 pop is 1 color

\ll.lll.ll Moslel for Genete Daw 10s

.-
R
-

Frevge L—Random tessellation of 0wt sqpaanre into ¢ wl donmains throsgh o cologed Voronos shing. Lot realization 62
ol a Porsson potnt process wanthh Voronon tessetlaton i O ey o to thee S
wiedd s oo coldenrs ).,






GENELAND spatial population model

Set of spatialized panmictic populations

example of different Tessellation outputs for different spatial
correlations

The spatial correlation is
modeled through the parameter
m = max number of disjointed
polygons that form a cluster

small m = more spatial correlation,
large m = less spatial correlation
because p(2 ind € single cluster)

m =20 increase with m

I not really linked to IBD !
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GENELAND method

the principle of the method is very close to STRUCTURE method
with additional parameters for the spatial arrangement of the
different cluster

The main assumptions are :
* the colored Tessellation
* Hardy-\Weinberg equilibrium in each cluster
» linkage equilibrium between loci in each cluster

Contrary to STRUCTURE, the MCMC algorithm implemented
in GENELAND also include the parameter K, the number of
clusters.
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GENELAND : simulation test

Inference of K

Contrary to STRUCTURE, the MCMC algorithm
implemented in GENELAND also include the

0 5 10 1..:) 20
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» % parameter K, the number of clusters.

Simulation test of the inference of K
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ual assig

TABLE 1

Average false classification rates (in percentage)
for all simulated data sets and subsamples with

various levels of genetic and spatial structure /

Structre Spatial Nonspatial GENELAND makes |

assignment errors tha

Geneland
Structure

Genetic Spacial| F-model  D-model | [F-model  D-model

Results with 10 loci

Yo Mmool 3| STRUCTURE, esped
o sl n, 5| thereisastrong spa
S m e | (smallm)and awes
Yo u e i | diflerentiaton (low
For < 004 m=<12 3.5 | 24 16.7

Results with 3 loci
All All 11.3 12.5 17.5 17.5

The level of geneuc and spatal structure increases with Fg
and decreases with m, respectively. Results are shown from
1000 simulated data sets of 100 individuals in two populations,
with .= Jop o= 10and .= 3, fio,_, = 10.



' GENELAND : simulation test ‘
spatial cluster delimitation
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GENELAND : simulation test

1.0

immigrant detection

good detection

Migrants do not strongly
affect the spatial
delimitation of the
clusters

Migrants are more
easily detected if they
are isolated rather than
surrounded by
residents (especially for

small m)
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~ Wolverine

] Il

5 10
Number of populations

FIGURE | L.—Posterior distribution of the number of popula-
tons for the wolverine data.




GENELAND : test on a real data set

00

200
300 400

200

100
100

72

Population 3 Population 4



~ Wolverine

spatial delimita
genetic cluste
detection of

West-East (km)

Freure 135, —Map of the mode of the posterior probability
to belong to each class for the wolverine data. Large character
numbers indicate population labels. Arrows indicate putative
migrants,



NELAND : test on areal data s
—

Wolverine

South-North(km)

of,
3. / . / This cluster was not

- detected with other
: . . = : methods : GENECLASS,
G o - e o STRUCTURE

West-East (km)

Froure 15, —Map of the mode of the posterior probabilin Better performance or

to belong to each class for the wolverine data. Large character b|aS Of the Spatlal
numbers indicate population labels, Arrows indicate putative
method?

MIgrants,




GENELAND :
simulation tests of potential problems

What happens when samples are aggregated in space ?

Results are intuitive:

True '
- delimitation | Spatial cluster delimitation
2 , T ; , IS precise when there are

sampled individuals around

i them.
- . better to sample

homogeneously around the

“ _ pOtential P
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GENELAND :
simulation tests of potential problems

What happens when there is Isolation By Distance ?

Results are also intuitive:

-

delimitation ‘ Spatial cluster delimitation
| ' _\ ' is not working for strong

S IBD and is worth when

samples are aggregated

w need for a new version
designed for IBD

< 4
Y
+
~ ~ P
~
- -



Biological processes Biological patterns




Analyse en Composantes Principales

Principe Général

e Réduction de la dimension des jeux de données en préservant
le plus de variabilité possible

e Premieres applications en génétique des populations par

Cavalli-Sforza (1966)

MACA
. RERLE.
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) PCA

& Interpretation

= (McVean, 2009,
Plos Genetics)

02

PC1

o0 o1

-0

~-0.2

L) .
10 100 1,000 10,000 100,000
Number of independent SNPs

Figure 2. Principal component analysis of two populations, [A) Consider a sample of 5, individuals from popaiation A Indicated by the red circk) and
na from population B (ndicated by the blue circle), where the two populations have the same effective population size of N and are both derived from a single
ancestza population, alvo of size N, with the split happening a time A i the past. (B) The kxcations of these two sets of samples on the fist PC is
defined by the time since divergence (the Eucidean distance between the samples is \/ 24/ T) (see text for definitions) and the relative sample size from the
populations, with the karger sample lying closer to the origin. Defining ¢ = 1, /(n, + ny), the relative location of the two populations on the first PCare 1 - ¢
for samples from population A and ~ ¢ for samples from population 8 (note that the sign is arbatrary). (C) To investigate the effect of finkte genome size
simulations were carmied out foe the model shown in part A with 80 genomes sampied from population A, 20 from population 8 and a spiit time of 002 V,

gererations (Fyr = 0.01) and between 10 and 10° SNPs. Lines indicate the analytical expectation. A jiter has been added to the x-axis for clarity. Note that the
separation of samples with 10 SNPs does not cormelate with population and simply reflects randoen dustering arising from the small numbers of SNPs.
010037V joumal pgen, 10006869002




PCA

Interpretation

(McVean, 2009,
Plos Genetics)

Figure 3. The effect of uneven sampling on PCA projection. PCA perojection of samples taken from a set of nine populations arranged in a
Rattice, each of which exchanges migrants at rate M per N, generations with each adjoining neighbour, leads to a recovery of the migration-space if
samples are of equal size (A}, or a distortion of migration-space If populations are not equally repeesented (8,C). In each part the left-hand panel
shows the analytical solution {the area of each point represents the refative sample size) with migration routes illustrated while the right-hand panel
shows the result of a simulation with a total sample size of 180 and 10,000 independent SNP locl. All examples are for M = 2.
dot10.1371/journal.pgen.1000684.g003
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PCA : conclusion

One of the numerous methods used to highlight
genetic structure

Advantages of PCA analyses

* Well known statistical properties
* Very efficient for large data sets
* Numerous extensions (e.g. sPCA, DAPC : Jombart & Co)
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Conclusions: Assignment, Clustering and PCA

Limits of above approaches :
» Assignation: some prior information about the populations

IS needed (equivalent to supervised clustering)

* PCA and Unsupervised Clustering: only representation

of the genetic diversity (that might be strongly affected by
the sample characteristics)

These approaches do not provide information about
the (historical) events that resulted in the observed
genetic structure.

They might at best help in defining compteing
demographic scenarios
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Conclusions: Assignment, Clustering and PCA

Limits of above approaches :
* Assignation: prior information needed
* PCA and Unsupervised Clustering: only representative

Do not provide information about the (historical) events
that resulted in the observed genetic structure

e.g.: when using STRUCTURE, extreme cautions is needed
when interpreting clusters as ancestral populations
=» different demographic scenarios might result in same

PCA (or Unsup. Clustering) results
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Conclusions: Assignment, Clustering and PCA

Do not provide information about the (historical) events
that resulted in the observed genetic structure

Other inference methods are needed to infer
demographic history:

» Estimating parameters and comparing scenarios:
v'Likelihood based inferences (cf. Raphael Leblois)

v'ABC approach, e.g. DIY-ABC (cf. Arnaud Estoup)

*Estimating (or comparing) trees: e.g. Phylip (Felsesntein &
co), Treemix (Pickrell, Pritchard, 2012), kim_tree (Gaultier,
Vitalis, 2012)
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Pour le TD de Lundi.....

Lire rapidement le document

Lire "R pour les debutants" Emmanuel Paradis
(http://cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf)

on ne préesentera pas le logiciel STRUCTURE et son
iInterface mais n'hésitez pas a poser des questions sur
son utilisation si vous en avez...
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